

印刷电路板(PCB)设计指南

A Brief Guide for PCB Design and Layout (Part-1)

2018年-9月7日

Part1: 通用电路篇

- 一、引言
- 二、PCB基础知识
- 三、PCB设计步骤和规范
- 四、电流路径分析
- 五、常见类型PCB设计

Part2: 高速电路篇

- 六、传输线与阻抗匹配
- 七、信号完整性
- 八、电源完整性
- 九、时序与信令完整性
- 十、新型PCB工艺及技术

一、引言

注意: 本课程不是PCB软件使用教程!

目前三大主流PCB设计软件

- Altiun-Designer: 轻量化的PCB设计软件,价格便宜,适合小企业、新手学习入门
- Mentor-PADS: 中高端软件,功能强大,价格适中,用户群广
- Allergo-Candence: 专业级的PCB设计软件,适合大规模复杂电路设计,价格昂贵

网上有大量的软件使用、学习、视频资源,建议自学软件知识

·、引言

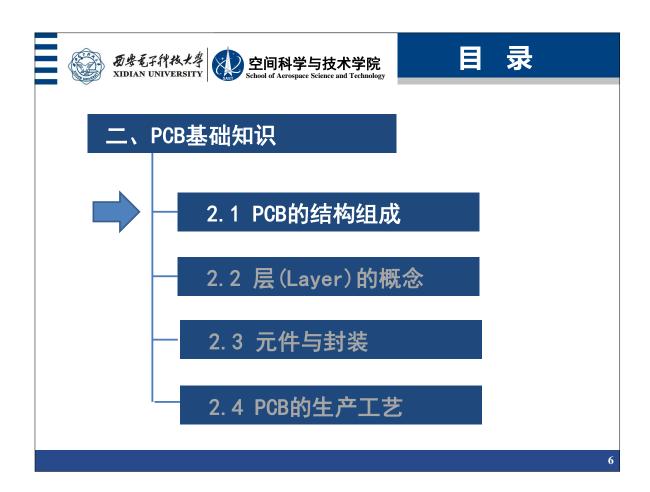
会用软件, 能够"布通"是远远不够的!

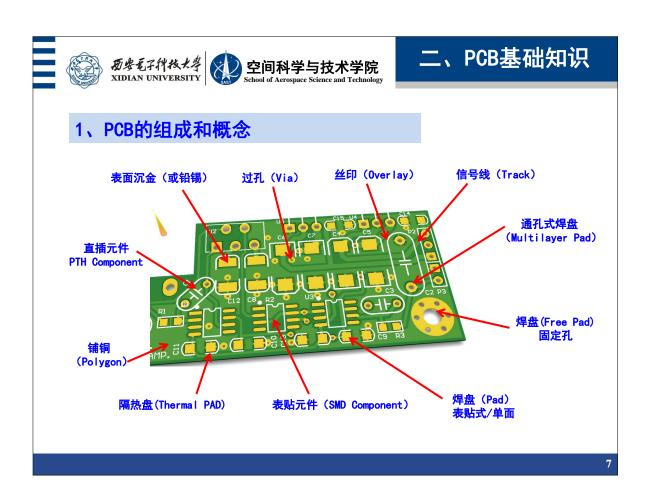
- 为什么我的电路仿真OK, 实际却精度很差?
- 为什么ADC数据的跳动(噪声)那么强烈?
- 为什么我的放大器电路会自激或啸叫?
- 为什么数字电路总是出现莫名其妙逻辑错误?
- 为什么我的单片机控制板总是死机、跑飞?
- 驱动1A的负载, 我应该要用多粗的导线?
- 220V电源入口, 绝缘间距取多少合适?
- 为什么功率管的焊点总是烧融?

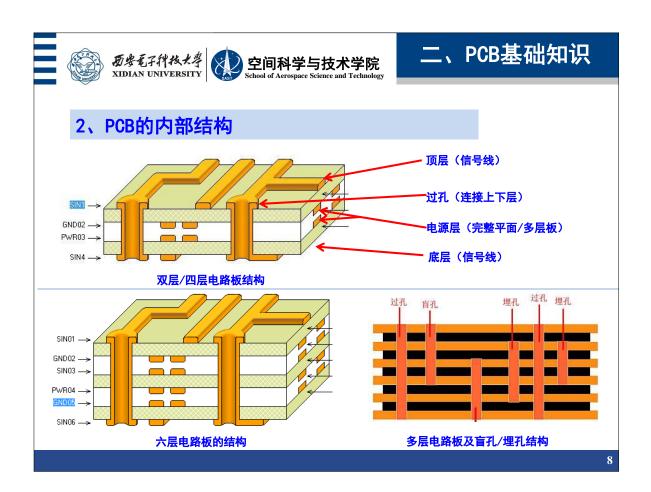
这些问题或现象都,往往都和PCB设计有关,本课程将重点 讨论PCB设计的原理性、原则性、共性的问题及解决方法!

目 录

Part1: 通用电路篇

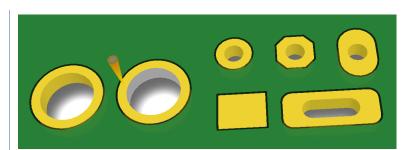

一、引言


二、PCB基础知识


三、PCB设计步骤和规范

四、电流路径分析

五、常见类型电路设计


3、PCB易混淆的概念

A. 过孔(Via)和焊盘(Pad)

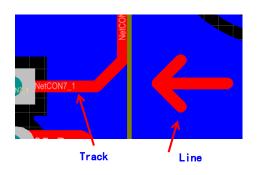
过孔(Via)

- 作为导线换层的 连通器使用
- 只能是圆形
- 必须是镀孔
- 必须在Multi层

焊盘(Pad)

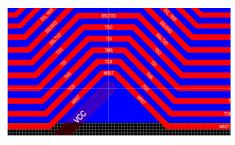
- 形状灵活的多:圆、椭圆、方形、长条、八边形
- 可选镀孔(连接孔)/非镀孔(作为固定孔)
- 可开异型孔,便于插入特殊扁平针脚元件
- 可以在Multi层(直插件),也可单层(SMD元件)

9



面安笔子科技大学 XIDIAN UNIVERSITY

二、PCB基础知识


3、PCB易混淆的概念

线(Line)

- 只是一个线
- 不具备电路节点对应关系,但在信 号层的话,仍会导电
- 布线时不会被推挤、移除
- 任何层都可画线

B. 线(Line)和导线(Track)

手动布线时,使用自动推挤功能使Track自动避让

导线(Track)

- 导线具有和原理图对应的网络连接关系
- 导线带有网标(NetLable),对应电路图节点
- 在布线时,导线可以被自动推挤、环绕等
- 只有在信号层才能画导线

1、PCB层(Layer)的分类

A. 导电层

- 顶信号层(Top Layer)
- 底信号层 (Bottom Layer)
- 内层(Internal Plane)
- 中间层 (Middle Layer)

C.绘图辅助层

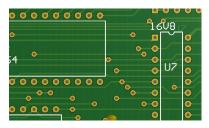
- 禁布层(keep-out Layer)
- 多层 (Multi-Layer)
- 机械层 (Mechanical Layer)
- 钻孔层 (Drill Layer)

B. 掩模(Mask)层

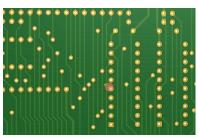
- 底丝印层(Bottom Overlay)
- 顶阻焊层(Top Solder)
- 底阻焊层(Bottom Solder)
- 顶锡浆层(Top Paste)
- 底锡浆层(Bottom Paste)

13

历安笔子科技大学 XIDIAN UNIVERSITY



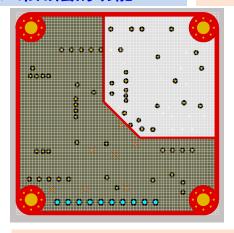
二、PCB基础知识

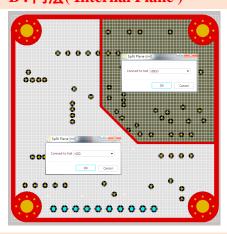

2、常用层的功能

顶层 (Top Layer) 底层 (Bottom Layer)

A. 信号层

顶层/元件面(Top Layer)




底层/焊接面(Bottom Layer)

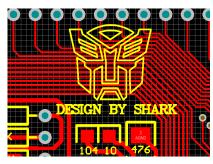
2、常用层的功能

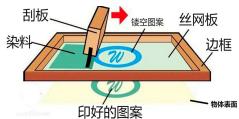
B.内层(Internal Plane)

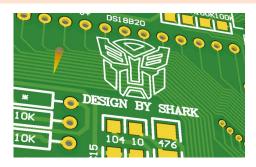
Plane 和 Layer 的区别

- Layer: 画线部分是保留的导电铜箔,空白区域为刻蚀/绝缘区域 (阳版)
- Plane: 画线部分为刻蚀区域,空白部分为导电铜箔 (阴版)
- 注意两者刚好相反。Layer适合画信号线,Plane适合画电源层 (多层板内层)

15



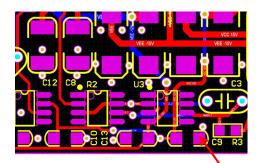

历安笔子科技大学 XIDIAN UNIVERSITY

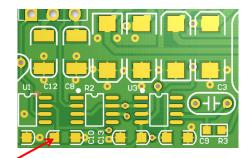

二、PCB基础知识

2、常用层的功能

C. 丝印层(Top/Bot Overlay)

丝印层的工艺和用途


- 采用丝网印刷工艺涂印
- 作为装配图、注释标记、Logo
- 作为切割、装配标记
- 局部覆盖,增加绝缘性



2、常用层的功能

D. 阻焊层(Top/Bot Solder)

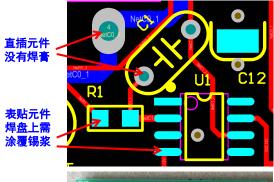
紫色: TopSolder 裸露部分

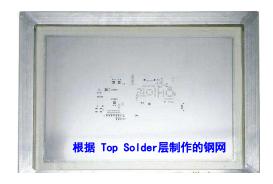
Solder层比焊盘 略大一些

阻焊层的工艺和用途

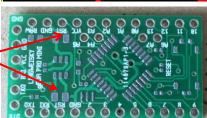
- Solder层划线部分为裸露金属,空白部分为阻焊层(俗称绿油)
- ▶ 大电流导线可以用Solder层裸露 出来搪焊锡加厚

17


历安笔子科技大学 XIDIAN UNIVERSITY

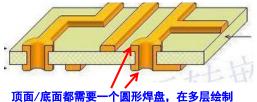


二、PCB基础知识

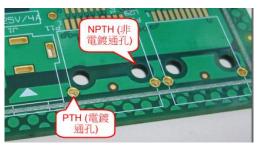

2、常用层的功能

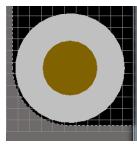
E. 锡浆层(Top/Bot Paste)

刮完锡浆 的电路板 准备贴 元器件


锡浆层的工艺和用途

- Paste层划线部分为钢网刻孔部分
- 用于SMT工艺刷锡浆
- 大电流导线可以用Solder层裸露并加 Paste锡浆加厚



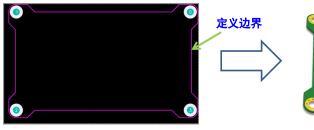

2、常用层的功能

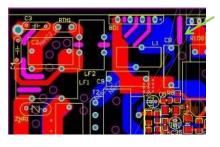
F. 多层(Multi-Layer)

多层的用途

- 多层上画的实体在每个Layer都有(Plane除外)
- 常用于直插焊盘、过孔等需要穿透每个层
- 用于焊盘时,可定义电镀孔(PTH)和非电镀孔 (NPTH)

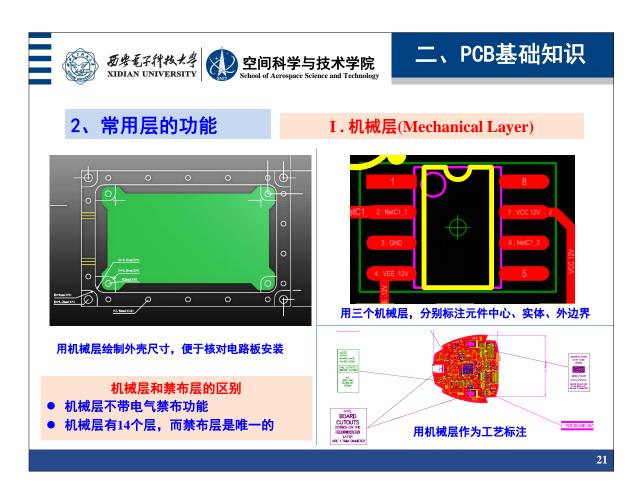
19


历安笔子科技大学 XIDIAN UNIVERSITY


PCB基础知识

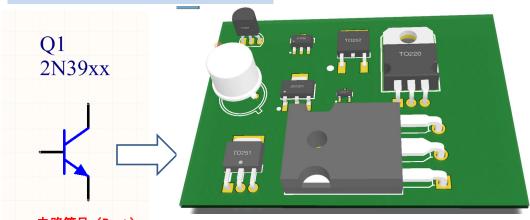
2、常用层的功能

G. 禁布层(Keep-out Layer)



定义开槽位置

禁布层的用途

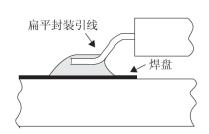

- 定义电路板的边界、切割线
- 定义电路板的挖空、开槽位置
- 定义不允许放置导线的区域,会自动避开

1、元件符号和封装

电路符号 (Part)

- PCB封装(FootPrint/Package)
- 同一个电路符号(Part),往往对应多个封装(FootPrint)
- 同一个封装,因为安装形式不同(如: 立/卧),衍生出若干子封装
- 设计时仔细核对: (1) 封装尺寸/形式是否正确; (2) 管脚顺序是否相符

23




历安笔子科技大学 XIDIAN UNIVERSITY

二、PCB基础知识

2、封装的焊盘大小

A.表贴器件焊盘

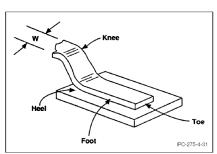
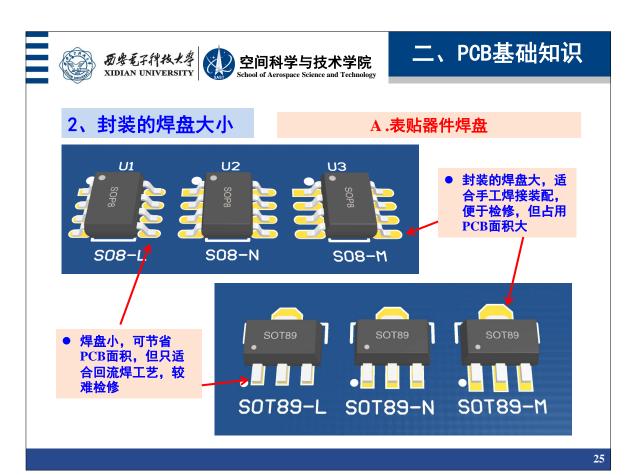
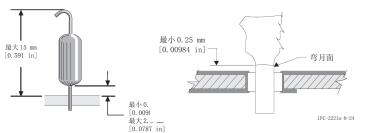
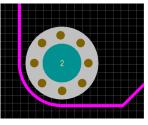



Figure 8-35 Heel mounting requirements


- ▶ 焊盘应大于引脚接触面积,留出装配误差
- ▶ 沿长度方向,延长0.5-1.5倍,便于拉锡处理
- 宽度方向,注意焊盘间距,保证绝缘和涂覆 焊膏最小间隙



2、封装的焊盘大小


B.直插器件焊盘

安装焊盘及应力释放孔

- 孔环不得低于最小加工能力,还要考虑钻孔误差
- 较重、或受力、承重的器件、焊盘直径要加粗、避免扯裂焊盘
- 焊盘加粗时, 若焊盘间的间距不足, 可考虑椭圆形加粗
- 小元件腿与通孔隙件至少0.1mm, 频繁拆卸的器件, 通孔要加大, 与元件腿之间最小缝隙0.2mm以上
- 紧固件焊盘,建议增加一圈过孔,缓解PCB形变的应力

1、PCB工艺概览

A.酸性蚀刻法(负片)

- (1)开料----(2)钻孔----(3)镀孔----(4)涂感光油墨----(5)图形转移(曝光)----
- (6)显影-----(7)蚀刻----(8)去膜——(9)检查

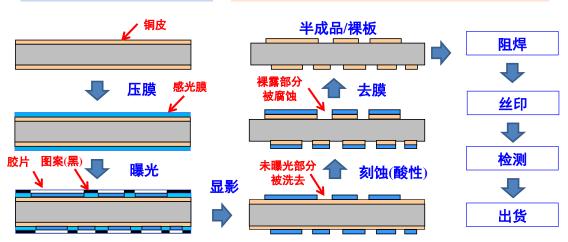
B.碱性蚀刻法(正片)

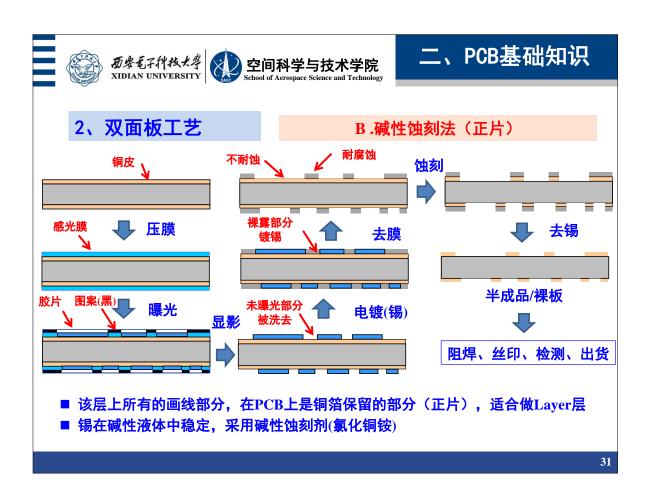
- (1)开料----(2)钻孔----(3)镀孔----(4)涂感光油墨----(5)图形转移(曝光)----
- (6)显影-----(7)电镀锡[抗蚀层]----(8)去膜----(9)蚀刻----(10)去锡----(11)检查

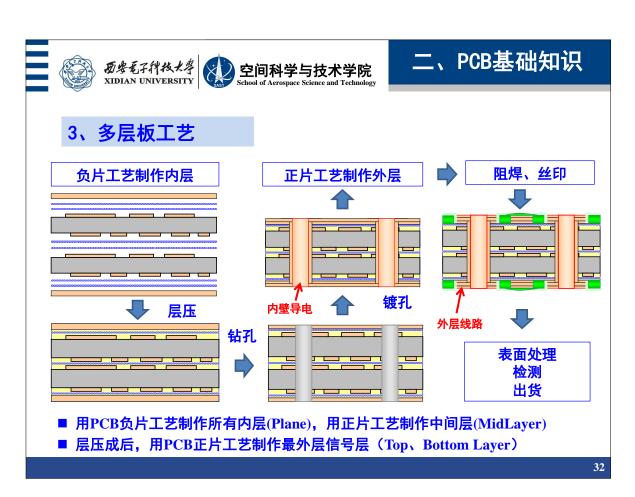
C.后处理

- (1)印阻焊/绿油----(2)印字符----(3)金属表面处理----(4)成品成型----(5)电测试-----
- (6)外观检查---(7)包装出货。

29


历安笔子科技大学 XIDIAN UNIVERSITY


二、PCB基础知识


2、双面板工艺

A.酸性蚀刻法(负片)

- 该层上所有的画线部分,在PCB上是铜箔被挖去的部分(负片),也适合Plane层
- 镀膜酸性稳定,采用酸性蚀刻剂(酸性CuCl₂、盐酸+双氧水/氯酸钠,FeCl₃已淘汰)

4、工艺极限

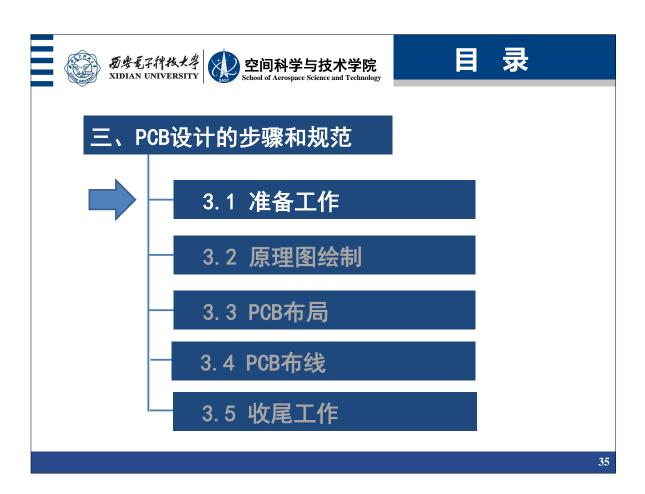
- 曝光能力和腐蚀的扩散效应,限制了最小线宽
- 电镀孔工艺,限制了过孔/焊盘的最小内径(PCB越厚,孔径越大)
- 层间对准误差、钻孔位置误差,限制了焊盘、过孔的最小外径
- 腐蚀工艺的洁净度,限制了导线间的最小间距
- 特殊新工艺,如激光钻孔、沉积板,能够达到2mil极限,但是价格昂贵

大部分厂家1.6mm双面板的加工极限

类型	可靠值	一般值	极限值
最小线宽	8-10mil	4-6mil	2-4mil
最小间距	10mil	6-8mil	4mil
最小过孔	(16-20)/(36-40)	(12-16)/(24-32)	(10-12)/(20-24)

- 极限值:通过苛刻的条件能达到,但不宜大批量生产。
- 一般值:可以大批量生产,但需要特殊工艺保证良品率,要收取额外的工 艺费和测试费,会增加成本和交货周期;
- 可靠值:可以大批量可靠生产。【仅供参考,以厂家沟通为准!】

33

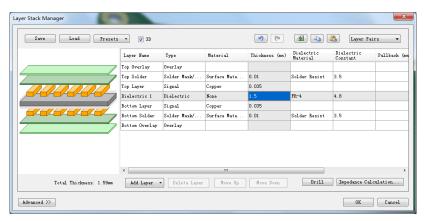

Part1: 通用电路篇

PCB基础知识

三、PCB设计步骤和规范

四、电流路径分析

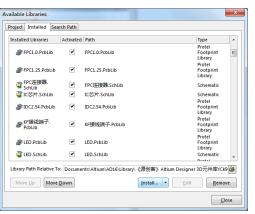
五、常见类型电路设计



2、设置LayerStack

- 设置基板和每层材料的介电特性、厚度:
 - (1) 这是后续特征阻抗分析、信号完整性的重要参数依据
 - (2) 给制版厂家的重要数据
- PCB行业用Oz(盎司)表示铜箔厚度, 1Oz=35um【类似于打印纸厚度用70g表示】

37



历安笔子科技大学 XIDIAN UNIVERSITY

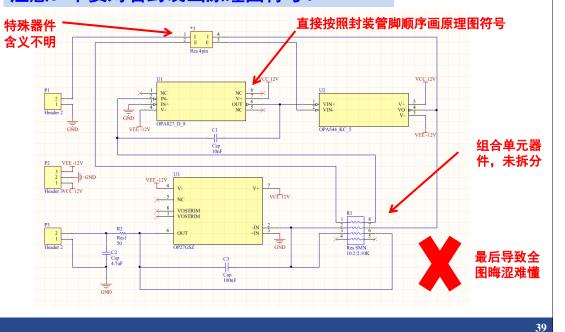
三、设计步骤和规范

3、准备元件库

检查所需元件的

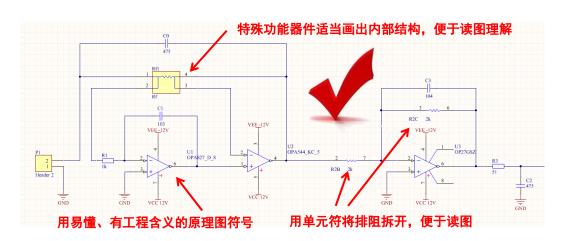
电路符号和封装

是否对应、齐全

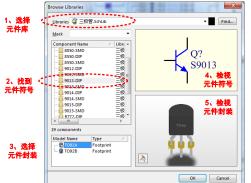

载入库文件:

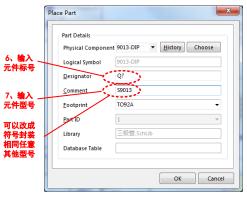
- (1)软件自带有基本库文件
- (2)第三方购买专业的库 (3)元件共享网站下载 ->连接
- (4)特殊元件自行绘制【参考软件教程】

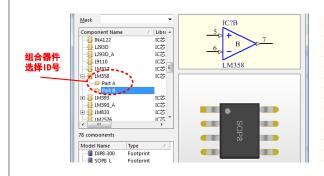
有多重封装的器件, 要仔细核对所选封装及 管脚顺序!

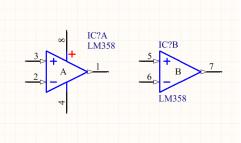

注意: 不要对着封装画原理图符号!

三、设计步骤和规范


注意:不要对着封装画原理图符号!


——原理图应该便于"读图",而非追求和实际器件排布**一**致


! 注意检查!

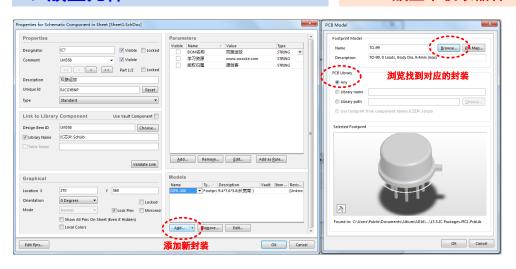

- (1) 元件符号的正确性、元件符号和所选用封装的对应性
- (2) 元件封装的管脚顺序,是否和实际元件的功能排列一致? (3) 元件应该具有唯一标号【若使用自动标注,可用?替代】

1、放置元件

B.放置多单元组合型器件

组合器件(如双运放、六反相器、多路光耦)含有多个的相同功能单元,应该按 单元ID来逐部分放置器件,以便绘图灵活调整连接关系和布局

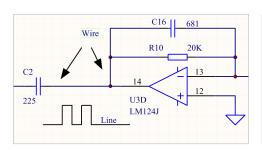
43

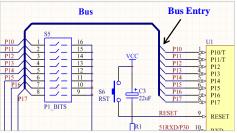


三、设计步骤和规范

1、放置元件

C.放置未收录器件


特殊封装的器件,自行绘制或下载后添加入库,建立对应关系;检查管脚对应

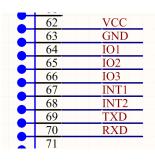


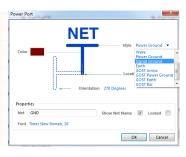
2、电气连线(Wire)

A.原理图绘制的四种线类型

- (1) Wire: 具有电气连接功能的"导线",用于绘制原理图
 (2) Line: 不具备电气连接功能的"图线",用于绘制各种标识
 (3) Bus: 不具备电气连接功能的"总线",用于指示总线线束的走向
 (4) Bus Entry: 具备电气连接功能的45度短线,表示"线束入口"

45


历安笔子科技大学 XIDIAN UNIVERSITY

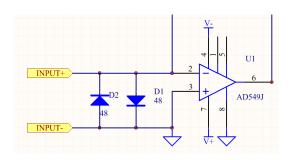


三、设计步骤和规范

2、电气连线(Wire)

B.网标(NetLabel)

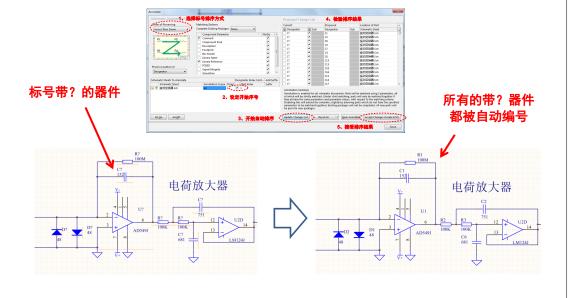
- 放置了相同网标的导线,电气连接在一起【不必实际画线】
- 放置网标后,该电路节点被命名为网标名【后续制定布线规则可以引用】
- 电源、地线应该用尽量用网标表示,以保持图面简洁【有专用网标符】
- 网标要整个放置在导线上【绘图规范】

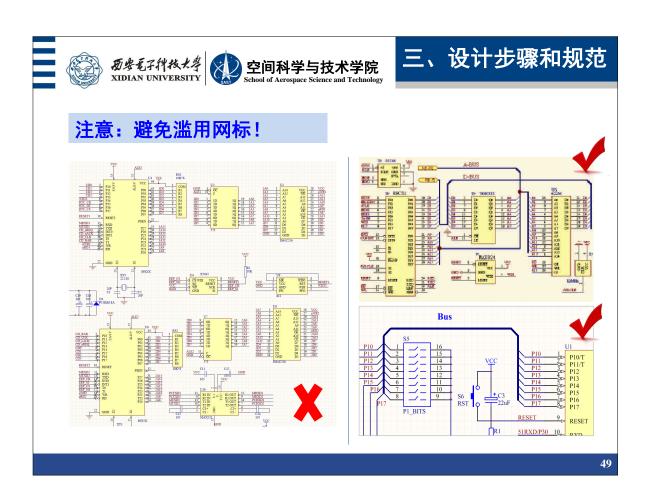


2、电气连线(Wire)

C.端口(Port)

- Port 也具有和网标相同的功能, Port名相同的导线表示连接在一起
- Port 还能够指示输入、输出关系, (I/O Type)
- Port符号一般用在:
 - (1) 分图之间的连接关系
 - (2) 表示模块单元之间的接口连接 (3) 某些特定输入/输出端口

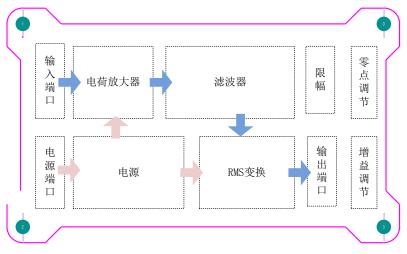


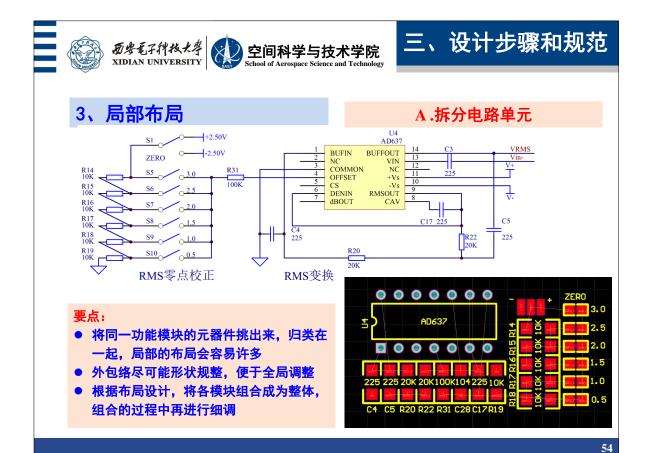

历安冠子科技大学 XIDIAN UNIVERSITY

三、设计步骤和规范

3、自动标注(Auto Anotate)

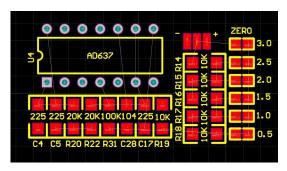
"七分布局,三分布线"

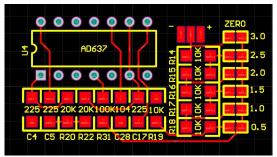

51


- 检查原理图所有对应元件封装是否有缺失、重复、错漏,重点
- 检查标号、型号参数等字符是否齐全
- 大图建议分批导入,原理图绘制完一部分,导入一部分、并立即检查该部分

2、布局总体规划

- 信号总体走向单向流动,尽量减少折返、交叉等情况
- 各种输入/输出端口、配置调节等部件尽量靠近电路板边缘,便于接线和调试操作;如果有大功率器件,从布局上要考虑通风散热,且远离温度敏感的电路部分。





3、局部布局

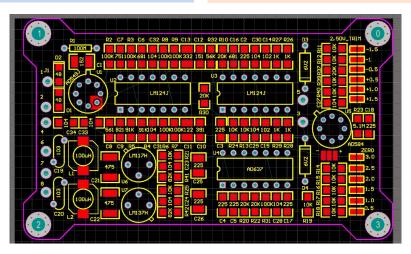
B.布局和预布线测试

完成局部布局的单元电路

尝试预布线(看布通率)

- 先确定大型器件、多管脚的器件位置,其余2-3腿小元件围绕大器件灵活调整。
- "一头近"原则:即每个小元件的飞线有一头尽量短,飞线的交叉会减少很多。
 相邻小元件之间的距离间隙,以能够走1-2根线为宜。
 预留一些空间放置元件的标号。元件标号字符一定要放在器件轮廓外
 布局时可以先暂时隐藏掉GND、VCC等公共网络的飞线,以免扰乱视线。

55

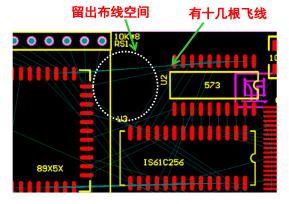


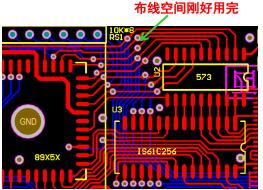
三、设计步骤和规范

4、整体布局

A. 布局的一般要求

好的布局:


- (1) 元件整齐划一,便于贴装工艺生产; (2) 整体上飞线短、交叉少,后续布线工作会变得容易; (3) 功能模块划分明确,信号流向清晰。



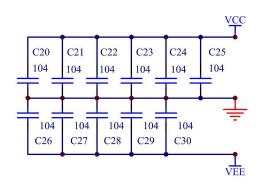
4、整体布局

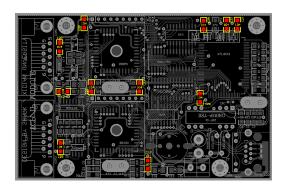
B. 布线空间的概念

要点:

- 按照飞线数量适当地预留布线空间。
- 布线空间的大小和飞线的密集程度有关,需要一定的经验积累
- 某些管脚顺序可以灵活调节,例如IO口,避免飞线交叉过孔能节省布线空间

57


历安笔子科技大学 XIDIAN UNIVERSITY



三、设计步骤和规范

5、整体布局

C. 退耦元件的处理

- 因为所有退耦器件的网标相同,原理图中放在器件附近反而会引起混乱;● 在原理图中,退耦电容集中画在一起,布局时随意取用,就近放在各IC附近● 退耦问题,在电源完整性中将详细讲解

不要直接使用自动布线!

1、安全间距(Clearance)设定

工作条件 直流电压 裸露外层线路 裸露外层线路 阻焊包覆 交流峰值 内层线路 (海拔<3000m) (海拔>3000m) 外层线路 0-15 0.05 mm 0.1 mm 0.1 mm 0.05 mm 16-30 0.05 mm 0.05 mm 0.1 mm 0.1 mm 31-50 0.1 mm 0.6 mm 0.6 mm 0.13 mm 51-100 0.1 mm 0.6 mm 1.5 mm 0.13 mm 101-150 0.2 mm 0.6 mm 3.2 mm 0.4 mm 151-170 0.2 mm 1.25 mm 3.2 mm 0.4 mm 171-250 0.2 mm 1.25 mm 6.4 mm 0.4 mm 251-300 0.2 mm 1.25 mm 12.5 mm 0.4 mm 301-500 0.25 mm 2.5 mm 12.5 mm 0.8 mm 0.0025 mm 0.005 mm 0.00305 mm 0.025 mm > 500 /volt /volt /volt /volt

要点:

- 电压越高的导线,和全板所需的安全间距越大
- 裸露部分(焊盘、过孔、元件腿)所需安全间距大
- 海拔越高,所需的绝缘间距越大
- 低压电路,参考制版厂家极限,并留余量

A. 安全间距规范

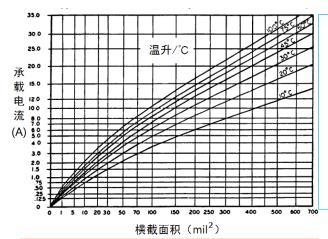
海拔	间距扩增因子
2000	1.00
3000	1.14
4000	1.29
5000	1.48
6000	1.70
7000	1.95
8000	2.25
9000	2.62
10000	3.02
15000	6.67
20000	14.50

61

三、设计步骤和规范

1、安全间距(Clearance)设定

B. 安全间距规则设定


利用规则编辑器,进行全局安全间距设定(参考软件使用手册,及PCB厂家指导数据)

2、线宽(Width)设定

A. 线宽规范

【例】导线通过10A电流,在室温25℃工作 时要控制导线表面温度不超过70℃

【解】

- (1) 允许温升70-25=45℃。
- (2) **查曲线横截面积** s=150mil²
- (3) 厚度1Oz (35um,1.38mil) 的PCB,则最小线宽是150/1.38=108mil;
- (4) 采用2Oz的电路板,需要54mil线宽。

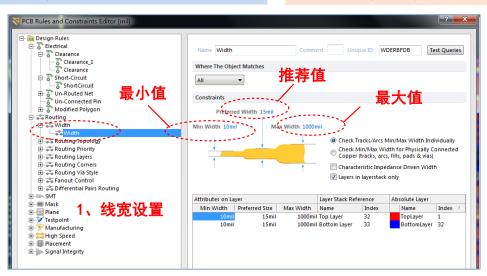
要点:

- 电流越大的导线,所需的越宽
- 采用厚板、改善对流条件,可减小线宽需求

注意:

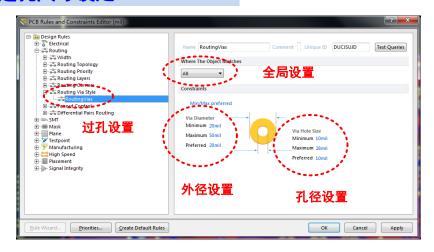
- 这仅仅是从温升角度考虑线宽
- 导线阻性压降,需要结合原理考虑

63


历安笔子科技大学 XIDIAN UNIVERSITY

三、设计步骤和规范

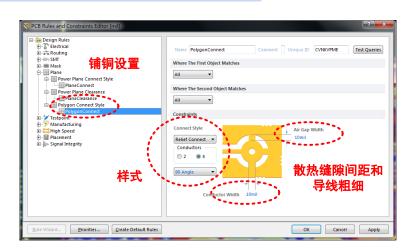
2、线宽(Width)设定


B. 线宽规则设定

- 利用规则编辑器,进行全局线宽设定(参考软件使用手册,及PCB厂家指导数据)
- 利用类编辑器和规则编辑器,对特殊网络制定线宽规则

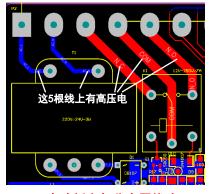
3、过孔尺寸设定

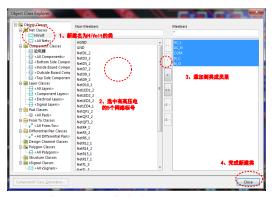
- 利用规则编辑器,进行全局过孔设定(参考软件使用手册,及PCB厂家指导数据)
- 利用类编辑器和规则编辑器,对大电流过孔规则设定
- 大电流过孔计算: 查表所需横截面s, 孔周长l=s/0.7-1.0mil(18-25um);孔径d=l/π


65

三、设计步骤和规范

铺铜连接样式设定

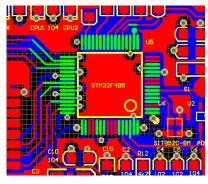

- 一般元器件焊盘,都要隔热缝,以免铜皮散热引起的焊接不良
- 大电流焊盘,不能加隔热缝;考虑人工焊接,或工艺上增加加热时间
- 地线过孔一般考虑直接连接,不用隔热缝

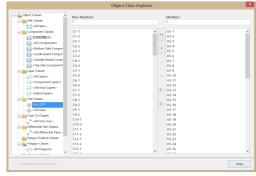


规则进阶 ·类(Class)编辑器

A.网络类(Net Class)的使用

将其归类,命名为"HiVolt"类


Name	Priority	△ Enabled	Type	Category	Scope	Attributes
Clearance_1	1	~	Clearance	Electrical	InNetClass('HiVolt') - All	Clearance = 60mil
Clearance	2	~	Clearance	Electrical	All - All	Clearance = 10mil


利用规则编辑器,将"HiVolt"网络类的安全间距增大,并把优先级调高

5、规则进阶——类(Class)编辑器

B.焊盘类(PadClass)

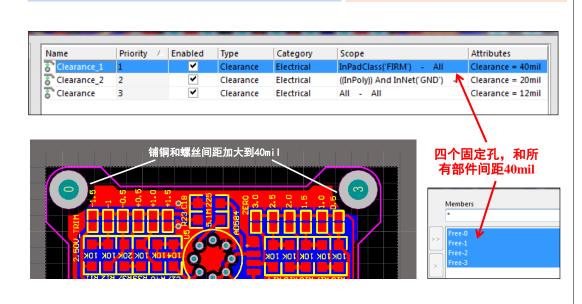
封装LQFP因Pad间距太小报错

新建一PadClass包含这64个焊盘

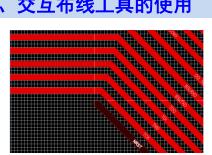
Name	△ Priority	Enabled	Туре	Category	Scope	Attributes
Clearance_1	1	~	Clearance	Electrical	InPadclass('Pad_LQFP') - All	Clearance = 7mil
Clearance_2	2	~	Clearance	Electrical	InPolygon - All	Clearance = 15mil
Clearance_3	3	~	Clearance	Electrical	All - All	Clearance = 10mil

利用规则编辑器,仅将该PadClass焊盘类的安全间距缩小,并把优先级调高

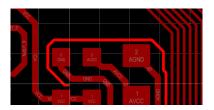
69

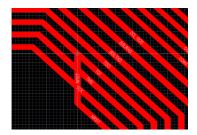

历安笔子科技大学 XIDIAN UNIVERSITY

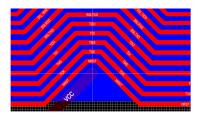
三、设计步骤和规范


5、规则进阶——类(Class)编辑器

B.焊盘类(PadClass)

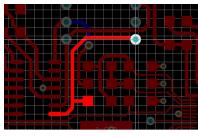


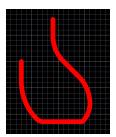

6、交互布线工具的使用


模式1: Stop at First Obstacle

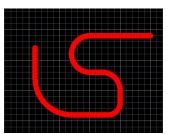
模式3: Walk around Obstacle

模式2: Ignore Obstacles

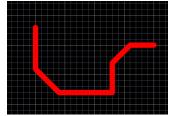

模式4: Push Obstacle

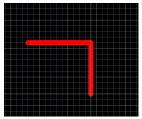


三、设计步骤和规范


交互布线工具的使用

模式5: Auto Route


Line90/45 With Arc


Line90/90 With Arc

Any Angel

Track 45

Track 90

7、常用布线策略

A. 入门——Z字走线法

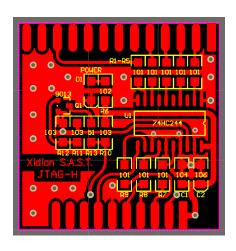
- 顶层、底层走线相互垂直,最大化布线空间 所有任意两点之间走 "Z" 字路径完成连接

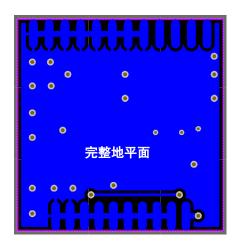
优点: 策略最简单, 新手入门常用方法

缺点:引入大量过孔

适用: 大量直插、通孔器件的PCB设计

73

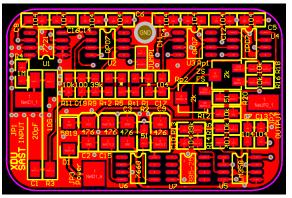


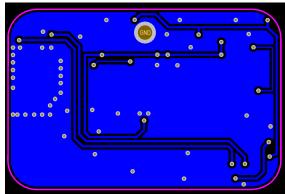

三、设计步骤和规范

7、常用布线策略

B. 讲阶——单面走线法

- 尽可能在元件面完成走线(如顶面)
- 尽可能保持底面完整性,并作为地平面


<mark>优点</mark>:过孔少,地平面相对完整 缺点:复杂,对布局水平要求很高 适用: 表贴器件为主的双面PCB设计



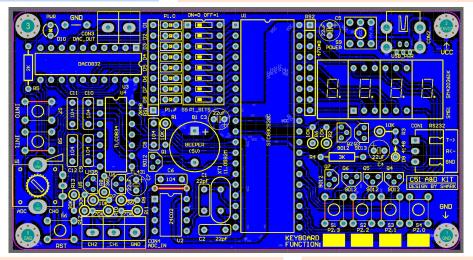
7、常用布线策略

B. 进阶——单面走线法

顶面: 走完了90%以上的连接线

底面:尽量保留完整地平面

注意: 地平面的完整性和连通性,是决定性能的关键(详见第四章讲解)

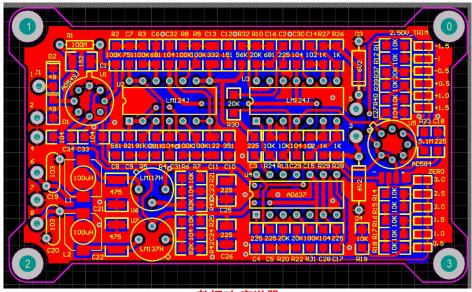

历安笔子科技大学 XIDIAN UNIVERSITY

三、设计步骤和规范

7、常用布线策略

C. 单面板

- ▼ 尽可能采用直插元件,留出布线空间● 充分利用接插件的固定脚,作为地线跳线● 实在布不通的局部,用0欧姆电阻或跳线

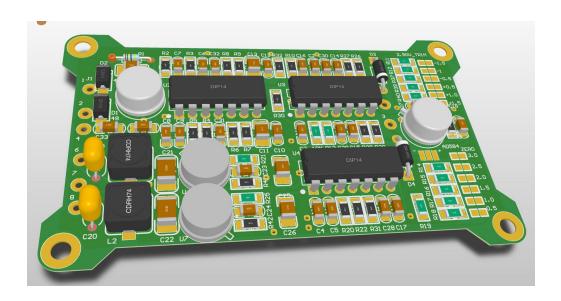

优点: 省钱!

缺点: 布局布线水平要求很高 适用:成本要求苛刻的PCB

【PCB范例】

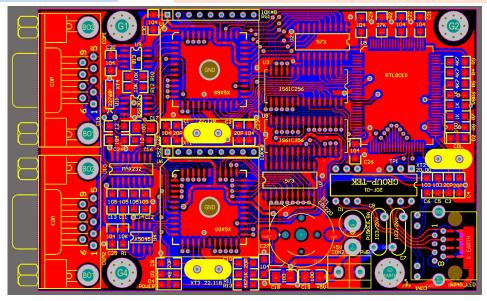
A. 纯模拟电路

·款振动/变送器



三、设计步骤和规范

【PCB范例】

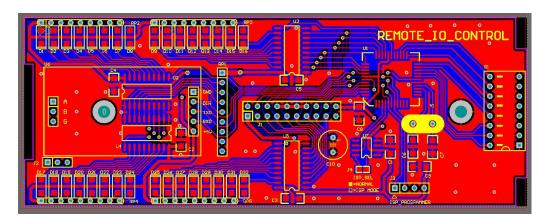

A. 纯模拟电路

【PCB范例】

B. 纯数字电路

一款嵌入式通信板卡

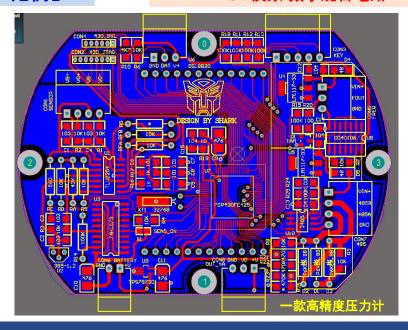
79



三、设计步骤和规范

【PCB范例】

B. 纯数字电路

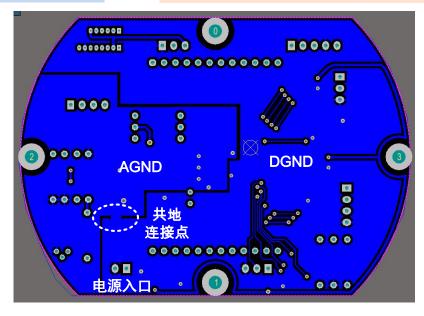


一款远程IO主控板卡

【PCB范例】

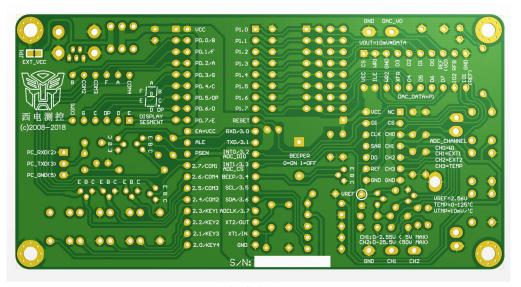
C. 模拟-数字混合电路

81



三、设计步骤和规范

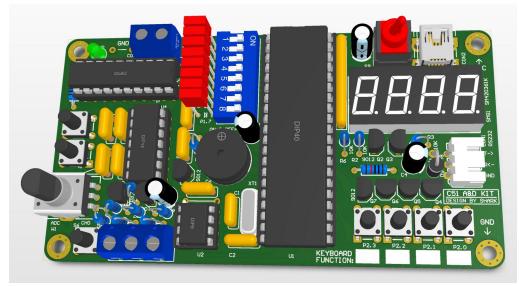
【PCB范例】


C. 模拟-数字混合电路

【PCB范例】

D. 单面板

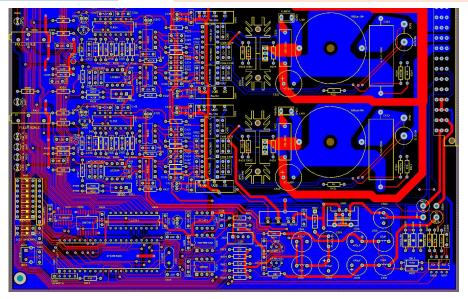
一款低成本的开发板


83

三、设计步骤和规范

【PCB范例】

D. 单面板



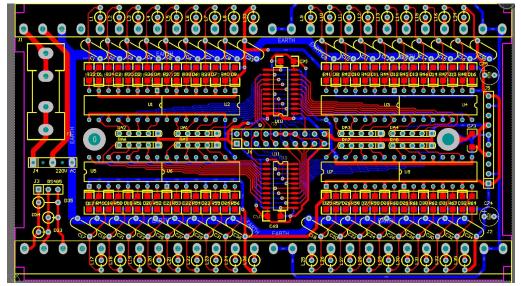
采用Solidworks建模 + Altium 3D渲染模式

【PCB范例】

E. 大功率/高压隔离

一款程控大功率电源及控制板(局部)

85

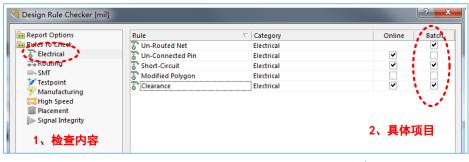


三、设计步骤和规范

【PCB范例】

E. 大功率/高压隔离

一款隔离IO输入板(1kV隔离耐压)



千万不要相信自己!

1、设计规则检查(DRC, Design Rule Check)

必须检查的三项:

- (1) Electrical -> Un-Routed Net: 未完成的布线的网络。
- (2) Electrical -> Short-Circuit: 两个不同网络之间的短路。
- (3) Electrical -> Clearance: 安全间距不足的布线

89

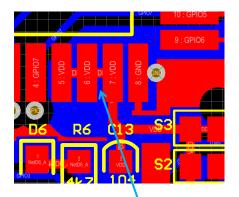
三、设计步骤和规范

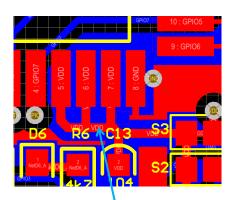
1、设计规则检查(DRC,Design Rule Check)

建议检查的四项:

- (4) Routing -> Width: 检查线宽是否符合设定范围;
- (5) Routing -> Routing Via Style: 检查过孔尺寸是否符合设定范围;
- (6) Placement -> Component Clearance: 检查元件之间的间距是否足够;
- (7) SMT->SMD To Corner: 检查所有贴片器件引出线是否够长。

注音.


- 规则检查是建立在规则编辑器的基础上的!
- 切勿"削足适履",试图修改规则来使得规则检查通过!



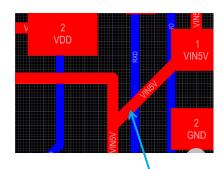
2、其他细节的检查

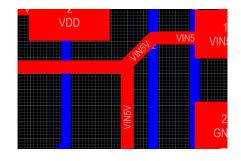
A. 表贴元件避免焊盘间的连线

焊盘间的线,会给焊接质量 的视觉检查带来困惑

修改后的焊盘间连接线

91

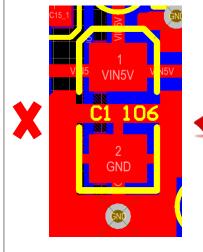


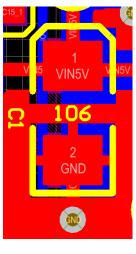

三、设计步骤和规范

2、其他细节的检查

B. 避免锐角连线

焊接时,热应力下易断




修改后的电路布线

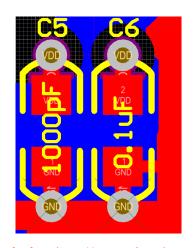
2、其他细节的检查

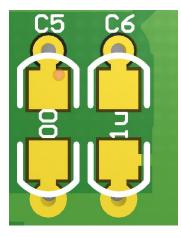
C. 注意标号被遮蔽

标号C1 焊接完后被元件遮挡, 检修时困惑

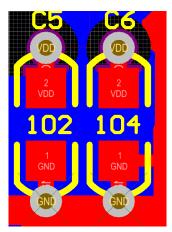
标号必须在器件轮廓之外

93



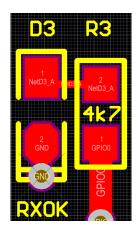

三、设计步骤和规范

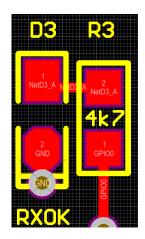
2、其他细节的检查


D. 注意字符和焊盘的冲突

焊盘是裸露的,无法印字

实际效果, 文字被"切"


修改后的字符

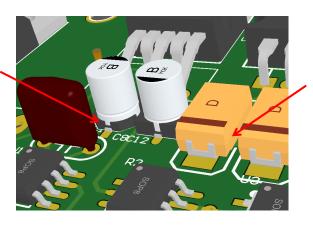

2、其他细节的检查

E. 细小零件避免出线粗细差异

R3两侧出现粗细差异太大,加热不均匀可能引起翘起(学名:曼哈顿现象;业界俗称"立碑"现象)

修改后

95

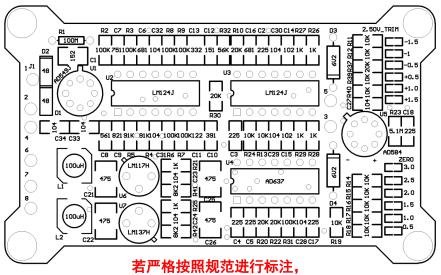


三、设计步骤和规范

2、其他细节的检查

F. 热风空隙

热风 缝隙



视频: 左右焊盘加热 不均匀的后果

高大的表面贴装元件,可能会遮挡回流焊的热风,造成局部加热不足虚焊 不得过于紧密地排布

3、生成装配图

右严格按照规范进行标注, 打印顶标层(TopOverlay)即可作为装配图使用

97

三、设计步骤和规范

4、准备物料单(BOM, Bill of Material)

表 5-2 物料清单范例。

4			•					
类型。	型号/值。	标号。	封装。	数量。	误差。	备注。	供货商/订货号。	٥
电。阻。	1k₽	R21、R25-R29。	1206₽	6∘	1%₀	温漂 50ppm/℃。	得捷,XXX-XXX。	
	5.1M _e	R23.	1206	1.0	5%	温漂 50ppm/℃。	得捷,XXX-XXX。	,
	8.2k	R41、R42。	1206	2.0	1%₀	温漂 50ppm/℃。	得捷,XXX-XXX。	0
	10k∘	R11-R19、R24、 R39、R40。	1206	12.0	1%€	温漂 50ppm/℃。	得捷,XXX-XXX。	
	20k₽	R30.	1206	1.0	1‰	温漂 50ppm/℃。	得捷,XXX-XXX。	ŀ
	100M _e	R1.	AXIAL0.4	1.	5%0	温漂 100ppm/℃。	得捷,XXX-XXX	P
电感。	100uH∘	L1 、L20	7x7x5 SMD.	2.0	5%-	-40-85℃,封闭式。	得捷,XXX-XXX	
	470uH.	L3.	7x7x5 SMD.	1.	5%.	-40-85℃,封闭式。	得捷,XXX-XXX	٠
,								

推荐这种BOM单格式,既可作为装配使用,也可作为采购用

恭喜, 您已经入门

然而,仅仅布通还远远不够……

Part1: 通用电路篇

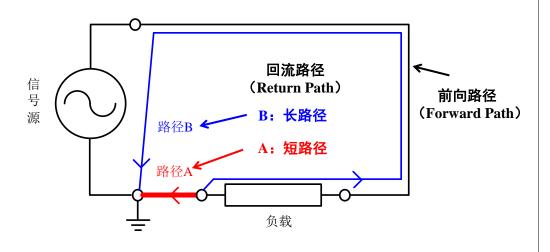
- 一、引言
- L、PCB基础知识
- 三、PCB设计步骤和规范
- 四、电流路径分析
- 五、常见类型电路设计

四、电流路径

大地上的河流九曲十八弯, 看似 走了很多不必要的弯路: 其实

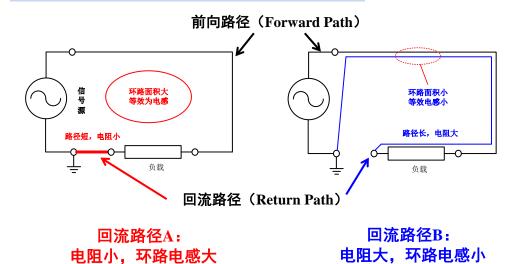
它自己找到了阻力最小的路径!

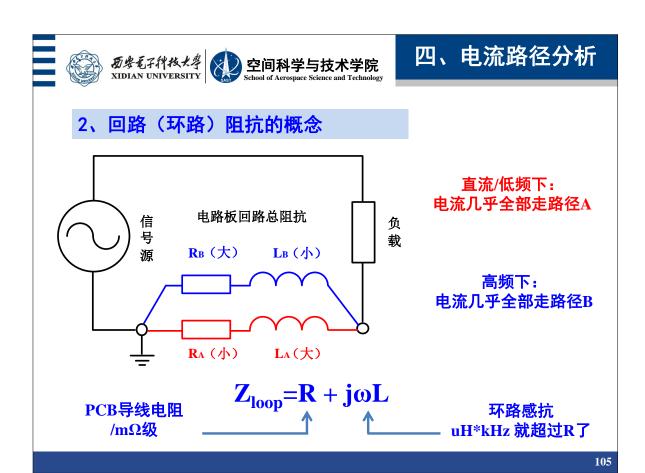
101


四、电流路径分析

- 4.1 电流路径的基本原理
- 4.2 信号环路与回流路径
- 4.3 公共路径与接地问题
- 4.4 电源路径与退耦问题

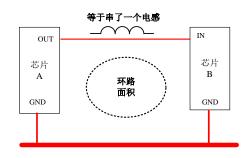
1、从一个简单的实验开始

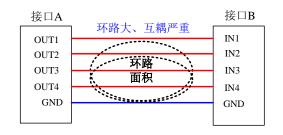

思考: 电流趋向于从哪条路径回流信号源?


103

四、电流路径分析

2、回流路径与环路阻抗的概念





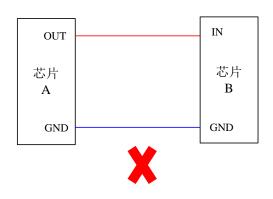
3、环路阻抗(感抗)对信号的影响

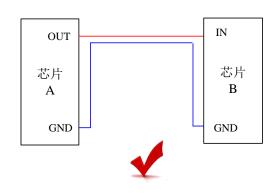
信号线看似很短很直,但是 引入了较大的环路感抗

多路信号线的环路之间的互 感,造成相互干扰

注意: "接地"的概念要被颠覆

回流路径! (Return Path)


- 原理图上接地标记无法表示回流路径,误导了版图设计/分析
- 电源在交流等效接地,因此VCC/VDD/VEE也可以作为AC回流路径

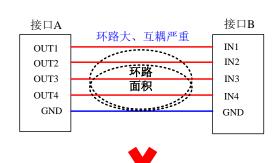


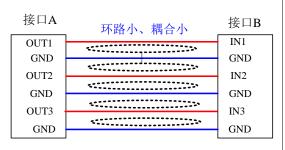
1、降低回流路径阻抗的意义

A. 减少回路感抗

减小回流环路面积, 能够有效降低感抗分量

109

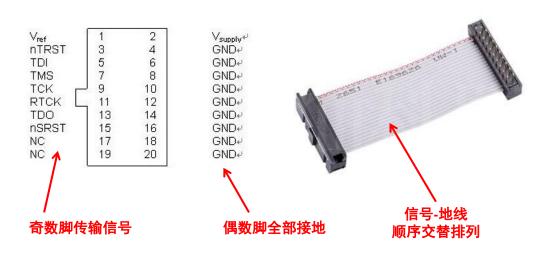




四、电流路径分析

1、降低回流路径阻抗的意义

B. 减少信号交叉干扰

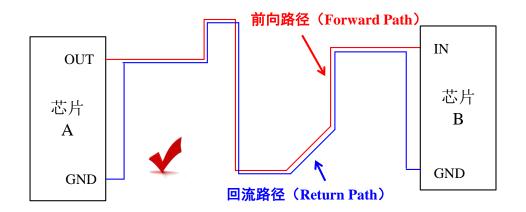


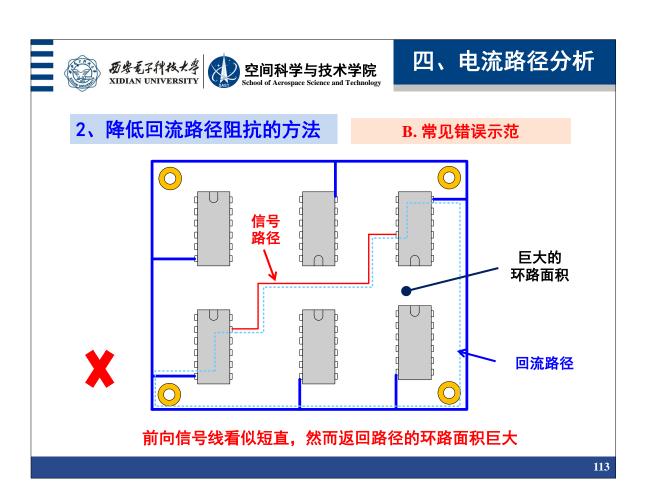
为每一个前向信号配置就近的回流路径,不仅能够减小环路感 抗,还能有效降低环路之间的互感

1、降低回流路径阻抗的意义

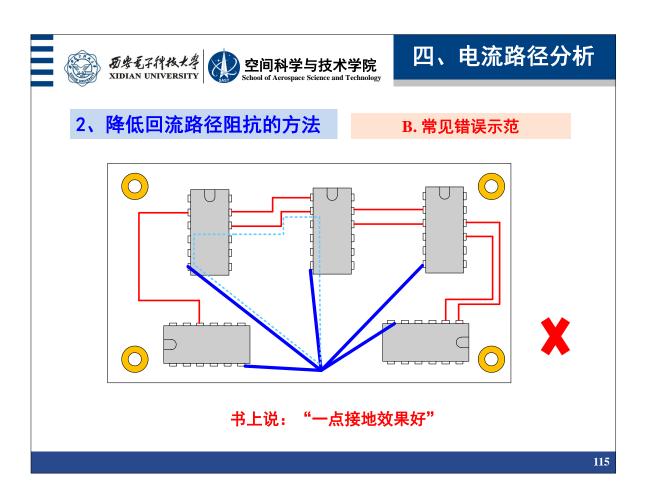
例:排线的交替接地布置

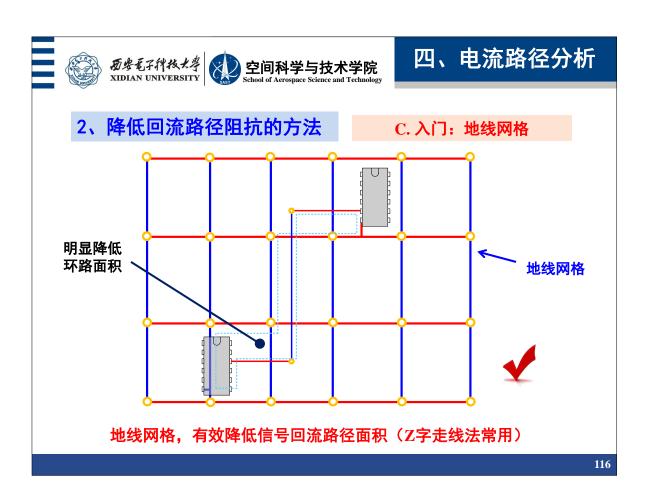
111



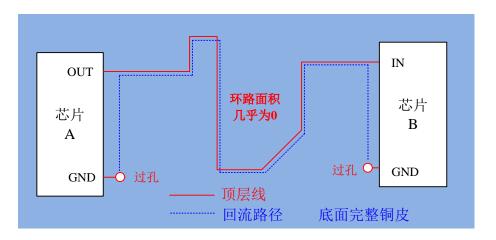

四、电流路径分析

2、降低回流路径阻抗的方法


A. 指导性原则



不要怕信号线长、不要怕曲折,但一定要为之提供一条 环路面积小(低环路阻抗)的回流路径

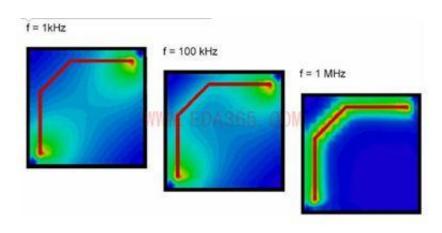


2、降低回流路径阻抗的方法

D. 进阶: 低阻抗平面

在布线区域保留一个完整的导电平面(低阻抗平面),在其上方任意 走线, 电流都能自动得找到最小环路回流路径(在信号线正下方)!

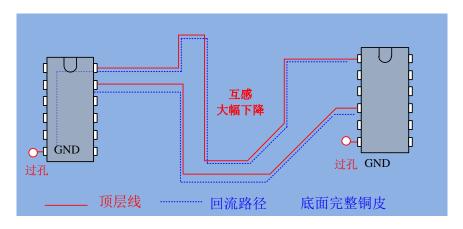
117



四、电流路径分析

2、降低回流路径阻抗的方法

D. 进阶: 低阻抗平面



地平面上方不同频率信号, 在地平面上的回流电流密度分布

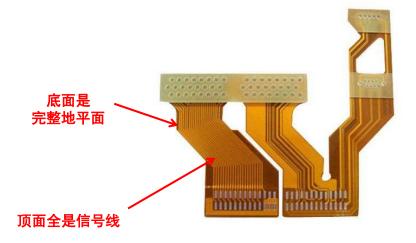
2、降低回流路径阻抗的方法

D. 进阶: 低阻抗平面

回流路径位于信号线正下方,大幅降低了相邻导线之间的互感

*注:电源VCC平面同样也可以作为低阻抗平面使用

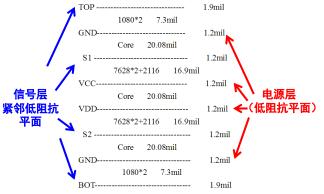
119



四、电流路径分析

2、降低回流路径阻抗的方法

例1: 柔性PCB排线

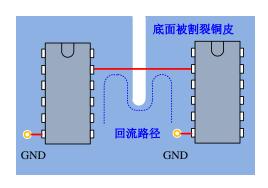

2、降低回流路径阻抗的方法

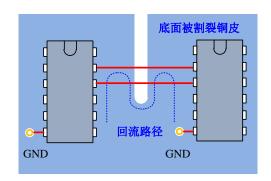
例2. 多层板的电源层

多层PCB的内部结构

多层板每个信号层下方都衬有有完整低阻抗平面,这样信号层 任意曲折走线都能保证回路面积很小(即使采用自动布线)

121

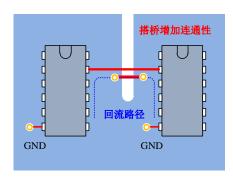


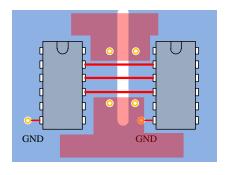

四、电流路径分析

3、低阻抗平面的割裂问题

A: 信号线跨过割裂缝

导线跨过割缝,回流路径绕行, 将引入额外的回流面积


平行导线跨过割缝,回流绕行路径重叠,将引入额外的互感



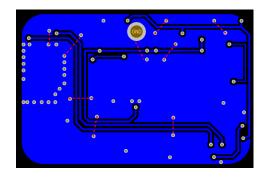
3、低阻抗平面的割裂问题

B: 割裂缝的缝补

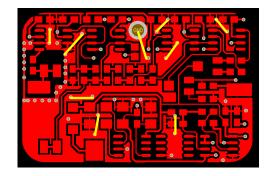
另一面用短线+过孔搭桥, 增加地平面连通性

利用另一面的铺铜进行搭桥, 增加地平面连通性

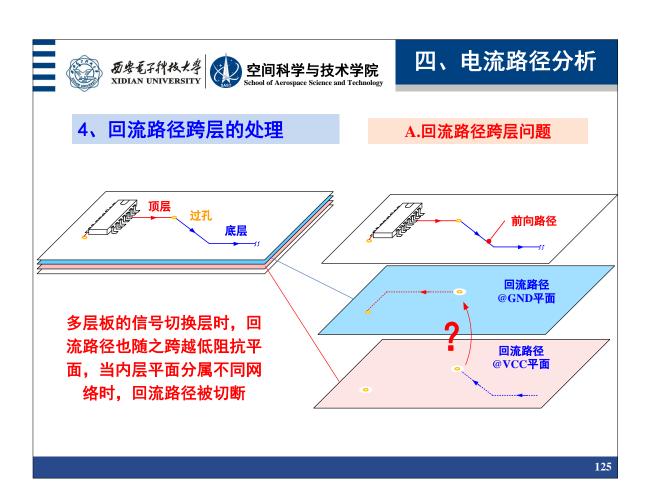
123

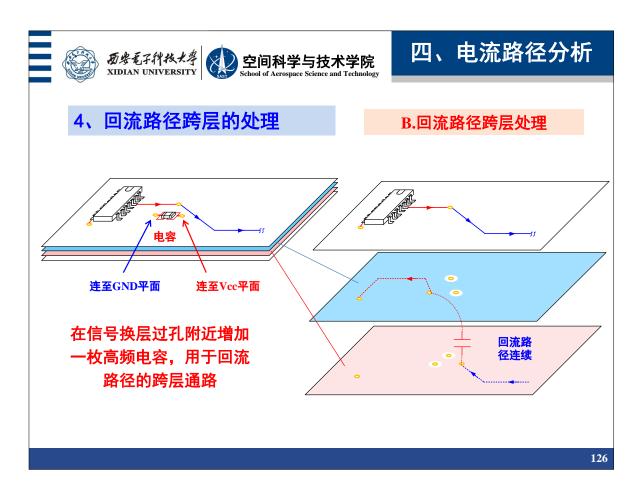


四、电流路径分析


3、低阻抗平面的割裂问题

C.底层割裂缝处理案例

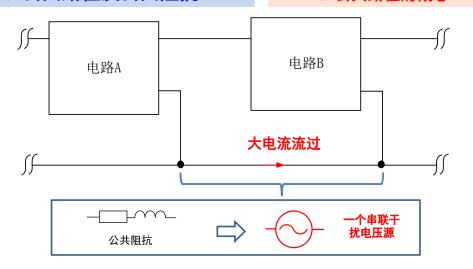

合理布局+连通性好的地平面,双面板也有可能接近多层板的效果!



底面几条长电源线造成的 地平面割裂

顶面搭桥位置示意图

5、小结

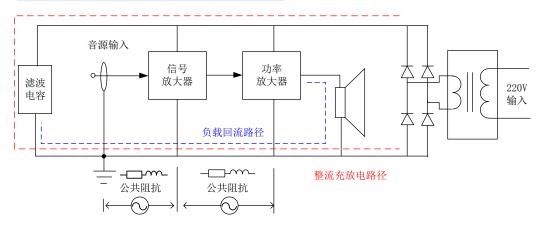

- (1) 信号的回流路径,往往比前向路径更重要!
- (2) 信号趋向于走阻抗(电阻+电抗)最小的路径回流
- (3) 高频下环路感抗起到了决定作用,而前向和回流路径的 环路面积决定了感抗
- (4) 完整的低阻抗平面,能够有效地减小环路阻抗
- (5) 回流路径若被切断,要通过各种手段缝补使之连通

1、公共路径及公共阻抗

A: 公共路径的概念

大电流通过某些电路之间的公共路径时,其阻抗引起的压降会叠加 在环路中, 引起相互干扰

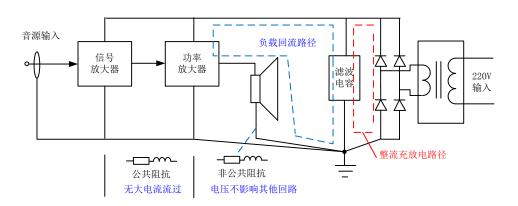
129



四、电流路径分析

1、公共路径阻抗的概念

B: 地线公共路径的例子


- 滤波电容充放电的电流,流过了敏感的信号放大器地线-><mark>交流声</mark>
- 喇叭回流电流,流过了信号放大器的地线 -> 额外反馈,自激振荡

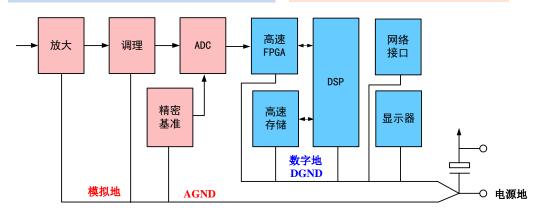
1、公共路径阻抗的概念

B: 地线公共路径的例子

原理图完全未变,仅仅通过拓扑结构的变化,消除了公共路径影响

- 充放电回路单独成环、喇叭大电流单独回流; 互不影响
- 小信号部分有公共路径,但其中没有大电流流过

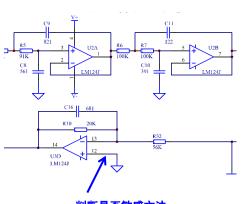
131



四、电流路径分析

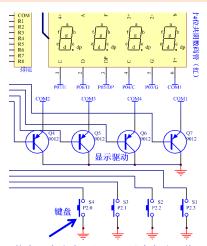
1、公共路径阻抗的概念

C: 模数混合电路的例子



- 混合电路中,将敏感部分和干扰强烈的地线分开,消除了公共路径
- 但我们强烈建议不要用"模拟地""数字地"的名称(定势误解为模 拟电路和数字电路的地线, 实际并不一定)

2、接地点的分类



判断是否敏感方法: 若串一个小电压源,电路性能立刻恶化

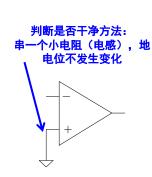
敏感地:

地电位轻微偏移也不可容忍

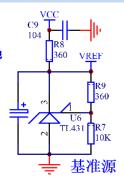
A: 按照敏感程度分类

若串一个小电压源, 不影响电路工作

非敏感地:


容许地电位较大范围偏移

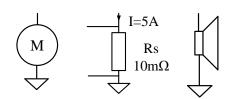
133



四、电流路径分析

2、接地点的分类

小信号放大器 接地点


小电流 直流接地点

干净地:

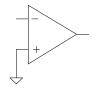
电流小、频率低(或直流),接 地点电位几乎不变化

B: 按照对外干扰分类

大功率、大电流接地点

骚扰地:

有高频/大电流,会引起接地点 附近地电位变化

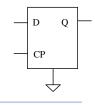


2、接地点的分类

干净-敏感地

- 模拟前端
- 高倍信号放大 小信号输入
- 精密测量电路

- 电流采样器
- 电源输出端反馈 参考点



骚扰-敏感地

C: 接地点的分类组合

干净-非敏感地

- 低频数字逻辑
- 低精度模拟电路 粗略门限电路
- 大幅度的模拟电路

- 电磁运动机构
- 喇叭、加热器
- 大电流开关
- **5速数字电路**
- 单片机、DSP、FPGA

骚扰-非敏感地

135

四、电流路径分析

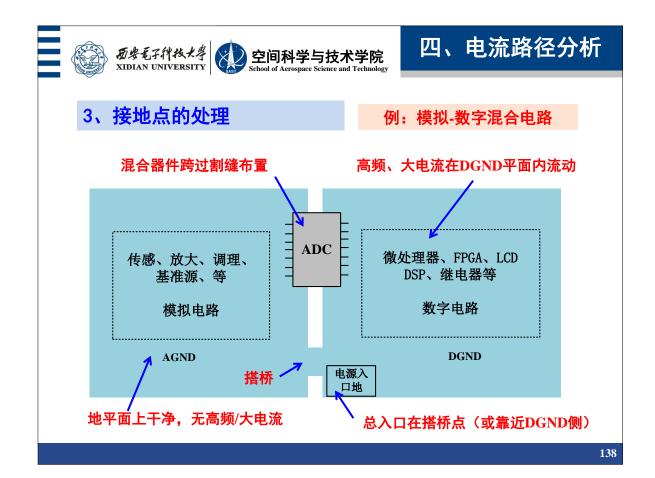
3、接地点的处理

A: 干净的非敏感地

- 最容易——接到哪里都行
- 允许和敏感地连接在一起
- 也可以和干扰地接在一起
- 看布局方便而定

B: 干净的敏感地

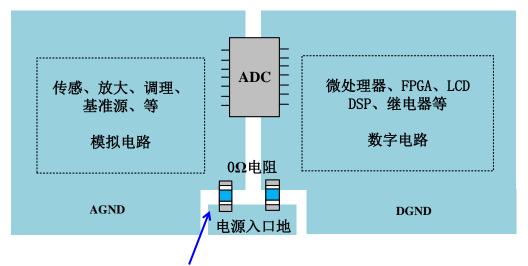
- 可以将这些敏感地尽可能近 地连在一起
- 通过铺铜等手段尽可能降低 各接地点之间的阻抗
- 尽量避免其他电流流经敏感 地所在区域


3、接地点的处理

C: 骚扰的非敏感地

- 避免骚扰地和敏感地有任何 的公共路径
- 将这些接地点单独连在一起,
- 最后一并连到电源入口处。
- 若只有少数骚扰非敏感地,
 可将其单独回流至电源入口

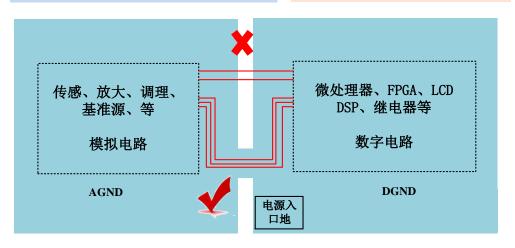
D: 骚扰的敏感地


- 最难处理——自己骚扰自己
- 若只有一个骚扰敏感点:将此 处点作为整个系统的接地点
- 若有多个骚扰敏感点:隔离和 差分几乎是唯一手段

3、接地点的处理

例:模拟-数字混合电路

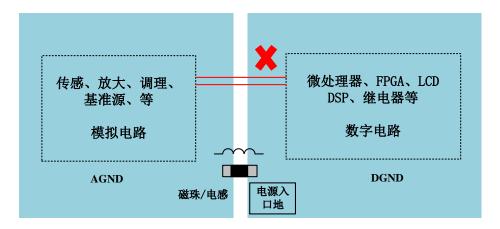
用0欧电阻搭桥,能避免PCB规则检查的报错(两个网标不允许直接短路)


139

四、电流路径分析

3、接地点的处理

讨论1: 跨越两个地的信号线



跨越两个地的信号线,要从搭桥的上方走线,方可保证回流路径不被割裂

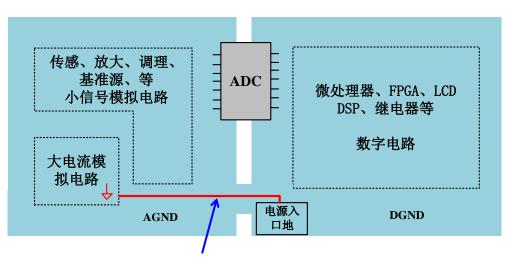
3、接地点的处理

讨论2: 是否要用磁珠搭桥?

如何取舍?

- 磁珠的感抗能抑制高频、射频段的地线杂波干扰
- 磁珠对所有跨越割缝的信号线产生很大的(不必要的)感抗 ¥

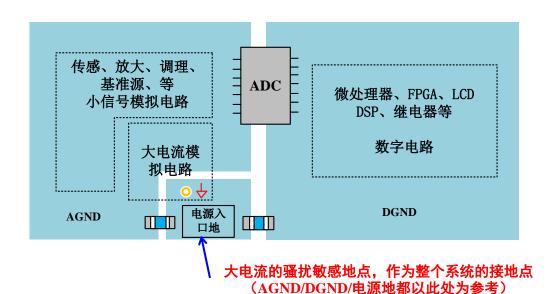
141



四、电流路径分析

3、接地点的处理

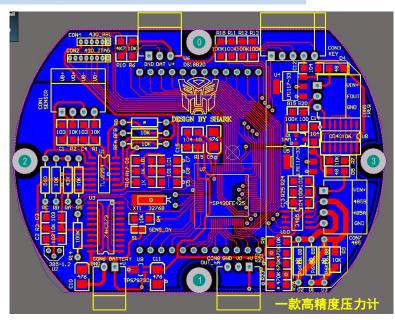
讨论3:模拟部分有骚扰地



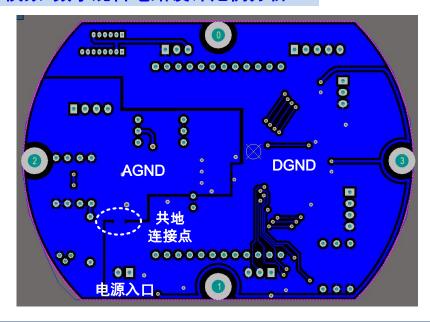
大电流模拟电路部分的接地, 单独地拉一条回流线至电源入口

3、接地点的处理

讨论4: 模拟部分有骚扰敏感地


143

四、电流路径分析


4、模拟-数字混合电路设计范例分析

4、模拟-数字混合电路设计范例分析

145

四、电流路径分析

5、小结

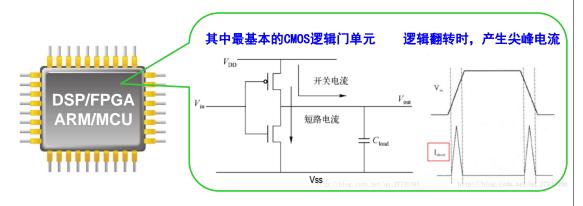
- (1) 公共阻抗+大电流流过=相互干扰源
- (2) 地线分为: 敏感、非敏感、骚扰、干净四类组合
- (3) 保证敏感地点尽可能接近零电位,是最主要目标
- (4) 避免骚扰地的回流电流经过过敏感地部分,是主要手段
- (5) 跨接地线割缝的信号线,要避免割缝对回流路径影响
- (6) 慎重使用磁珠连接

录

四、电流路径分析

- 4.1 电流路径的基本原理
- 4.2 信号环路与回流路径
- 4.3 公共路径与接地处理
- 4.4 电源路径与退耦问题

147

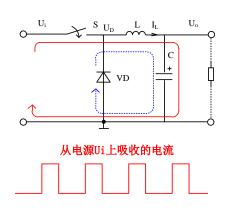


四、电流路径分析

1、电源路径有关的概念

A: 数字芯片的工作电流

- 数字电路的电流波形都是大电流脉冲尖峰,即使是低功耗芯片;
- 每一次逻辑翻转,都会伴随电流尖峰产生,测到的是其平均值;
- 脉冲尖峰电流波形中,包含大量的高频分量! (与工作频率无关)


1、电源路径有关的概念

B: 模拟器件的工作电流

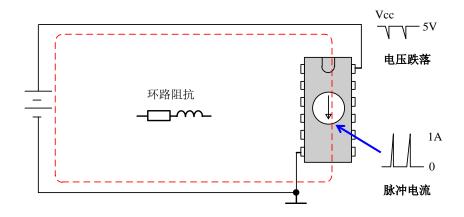
模拟放大基本单元的工作电流

+Vcc Vcc电流 输入信号

电源变换基本单元的工作电流

- 模拟器件的工作电流与其信号频率有关,且对于单边电源来说呈脉动状态
- 功率变换/开关电路,呈现周期性的脉动电流(可能还伴随强烈的高频干扰)

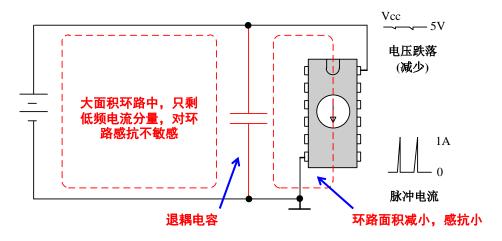
149



四、电流路径分析

1、电源路径有关的概念

C: 电源的环路阻抗与纹波


- 尖峰(高频)脉冲电流,流经环路感抗时造成电源瞬间跌落,引起电源纹波
- 对于高频尖峰,电源路径的阻抗以环路感抗为主,加粗导线无用

1、电源路径有关的概念

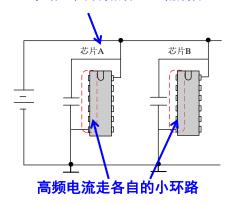
D: 退耦的概念

- 对于尖峰(高频)脉冲电流,退藕环路面积小、感抗小
- 电源至退藕电容只剩低频分量,对感抗不敏感,简单加粗导线即可

151

历安笔子科技大学 XIDIAN UNIVERSITY

四、电流路径分析

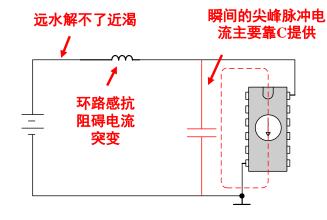

1、电源路径有关的概念

D: 退耦缓解电源线公共阻抗影响

所有高频电流都走干路,互相影响

环路阻抗1 环路阻抗2 ____ ____ $\nabla \nabla$ 电压跌落 芯 片 - \mid - \mid 0 脉冲式耗电

干路上只剩低频、直流成分



- 退耦电容就近放置——并非距离近,而是电容到芯片电源脚环路面积尽可能小
- 干线只剩低频/直流分量,对环路面积不敏感,简单加粗降低电阻即可。

2、电源退耦的要求

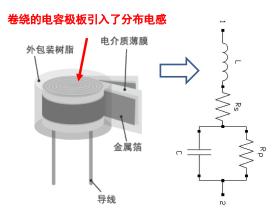
A: 对退耦电容的容量要求

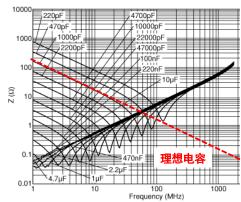
含义:全靠C储能电压跌落 不超过5%能抗多久

$$\delta t = 0.05 \times \frac{V^2}{P} \times C$$

● 工作电流脉冲持续时间越长、功耗越大、电压越高。所需的电容值越大

153




四、电流路径分析

2、电源退耦的要求

B: 对退耦电容频率特性的要求

● 大容量电容反而高频特性差,

- 例:村田RCER71系列电容的阻抗特性曲线
- 高频阻抗要足够低: ESR要小; ESL小谐振点高
- 通常会通过大小电容并联来保证低频和高频下都有足够低阻抗

2、电源退耦的要求

B: 对退耦电容特性的要求

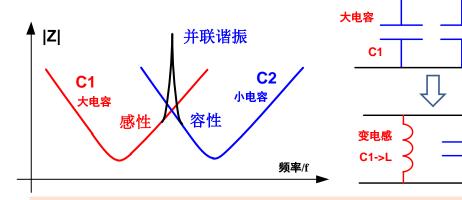
表 1. 电容的谐振频率

电容值	通孔插装 (0.25 引线)	表面贴装 (0805)
1.0 μF	2.5 MHz	5 MHz
0.1 μF	8 MHz	16 MHz
0.01 μF	25 MHz	50 MHz
1000 pF	80 MHz	160 MHz
100 pF	250 MHz	500 MHz

155

历安笔子科技大学 XIDIAN UNIVERSITY

四、电流路径分析


小电容

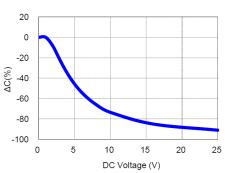
C2

C2

2、电源退耦的要求

B: 对退耦电容频率特性要求

- 大电容呈电感特性,小电容仍然容性,两者可能会构成并联谐振电路
- 在谐振点处,将会呈现高阻抗特性——几乎呈断路,该频点信号无法穿过
- 当两个电容差别3个数量级以上时,要特别小心(不建议3数量级以上并联)


2、电源退耦的要求

DC Bias Characteristic

一枚50V-II类陶瓷的直流偏压效应 (电容量随直流偏压急剧下降一半)

DC Bias/V

C: 注意陶瓷电容的偏压效应

一枚25V-III类陶瓷的直流偏压效应 (电容量随直流偏压急剧下降至10%)

- ||-|||类陶瓷介电系数随着场强增加而急剧下降, 电容量也随之下降
- 额定电压下,Ⅱ类陶瓷损失一半左右容量,Ⅲ类陶瓷损失容量90%以上
- 在退耦、隔直应用时,必须在设计时考虑余量,容忍直流偏压效应引起的损失

157

-10

-15

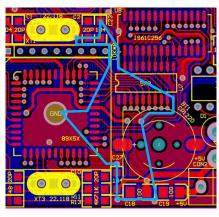
-20

-25 -30

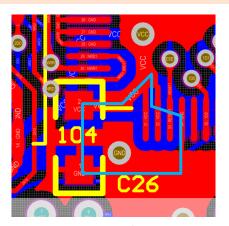
-35 -40

-45

-50

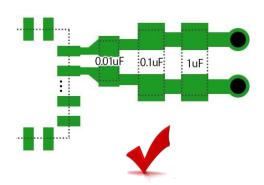

Cap. Change/%

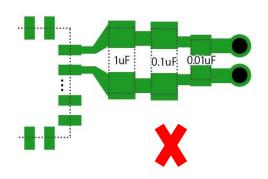
面安笔子科技大学 XIDIAN UNIVERSITY


四、电流路径分析

2、电源退耦的要求

D: 对电容摆放位置的要求



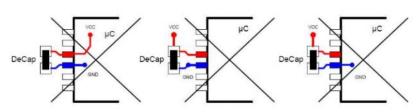

退耦路径的环路面积尽可能小,比电容和芯片实际空间距离更重要

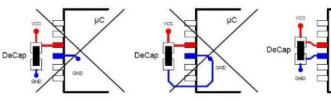
2、电源退耦的要求

D: 对电容摆放位置的要求

多个电容并联时, 小容量的电容应更靠近芯片电源引脚

159




四、电流路径分析

电源退耦的要求

常见错误分析

- a) VCC and GND lead to supply noise current flows not via DeCap, DeCap has not effect
- b) GND lead noise to system GND noise current flows partly via DeCap, DeCap has hardly effect
- c) GND lead noise to System GND noise current flows partly via DeCap, DeCap has hardly effect

- d) VCC and GND lead to supply noise current flows not via DeCap, DeCap has not effect
- e) GND is not short connected to DeCap. between GND and DeCap flows a loop current DeCap has hardly effect
- f) DeCap correct connected to μC and power supply.
 high speed current will be supported from DeCap

3、多层板的退耦

A: 退耦半径的概念

退耦半径 IC都从电源平面上取电

- 在有完整电源平面的情况下,一个电容可以为附近的IC提供退耦
- 一枚电容能够提供优良退耦效果的区域半径, 称为退耦半径

161

四、电流路径分析

3、多层板的退耦

B: 退耦半径的计算

电容退耦半径 = 谐振频率对应波长/(40-50)

【例1】

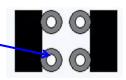
1nF陶瓷电容, ESL=1.6nH, 谐振频率为125MHz, 谐振周期为 8ps。假设信号在电路板上的传播速度为65.3ps/cm,则波长为120cm。电容去耦半径为120cm/50=2.4cm, 大约等于 2.4厘米。

【例2】

10uF电解电容谐振频率为800kHz,按上述过程计算退耦半径约3.7米

结论: 小电容应尽量靠近芯片引脚,大电容对位置不太敏感; 又为了避免充放电电流经过整板,通常把大电容放在电源入口处

3、多层板的退耦

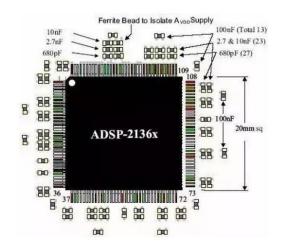

C: 降低过孔引入的寄生电感

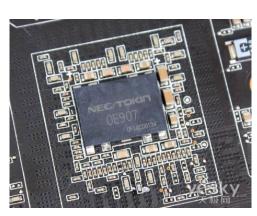
引入额外环路寄生电感

● 就近接电源层,尽可能较少引出线带来的额外环路面积

● 严禁多个电容共用过孔! (引入公共路径感抗)

163

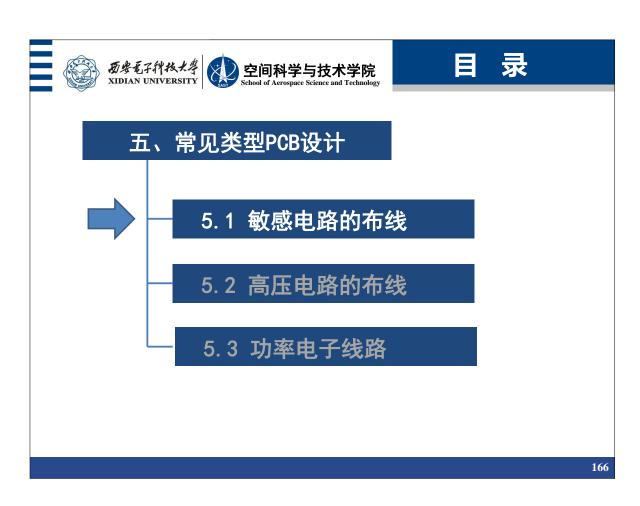




四、电流路径分析

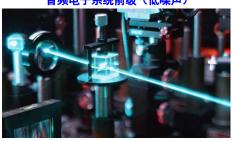
3、多层板的退耦

电源退耦电容布局实例



ADI高速DSP推荐的退耦电容布局

华硕GTX系列显卡芯片背面的退耦电容布局 (中间OE907是一枚大电容)



1、敏感电路

光电探测转换电路(弱信号)

A. 常见的敏感电路

精密仪器(准确度)

传感器 (分辨率)

敏感电路:容易受干扰的电路部分

167

五、常见类型PCB

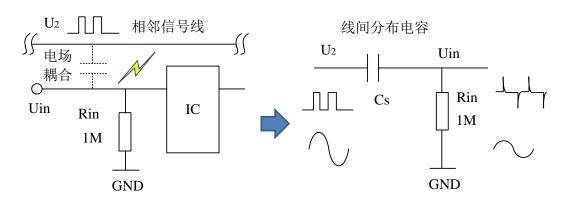
1、敏感电路

B. 敏感电路的考量

- 是否容易受干扰
- 对干扰的容忍度
- 是否在干扰源附近

D. 电路受干扰的原因

- 来自空间电场耦合、
- 来自磁场耦合、
- 来自电路板绝缘不良的漏电电流。


C. 常见敏感电路位置

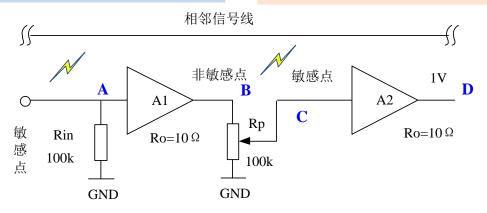
- 微弱信号线
- 高阻抗点
- 放大器前级输入端
- 传感器信号
- 大功率电路附近的检测电路

2、电场耦合干扰

A. 电场耦合干扰的概念

- 机理:干扰源的电力线跨过导线间的分布电容,和被扰线对地阻抗构成分压关系
- 干扰源线的距离越近、频率越高,越容易干扰(容抗越小)
- 被干扰线对地的阻抗越高,越容易受干扰 (阻抗越高)

169

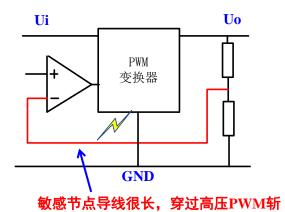

面安笔子科技大学 XIDIAN UNIVERSITY

五、常见类型PCB

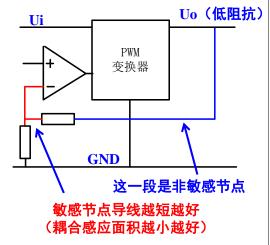
2、电场耦合干扰

B. 电场敏感节点的判断

节点的对地的等效阻抗越高,就越容易受到电场干扰。


A点: 输入开路状态高阻是敏感点(接入理想电压源后,变为非敏感点)

B点/D点: 运放输出端, 低阻抗点, 非敏感点

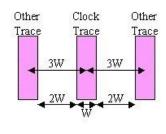

C点: 电位器拧到两侧时为非敏感点, 电位器在中点时, 为敏感点

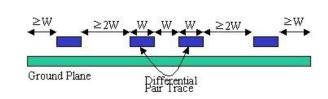
2、电场耦合干扰

C. 敏感节点的处理

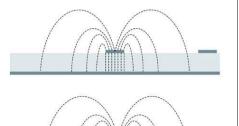
171

波部分的下方, 易受电场耦合干扰

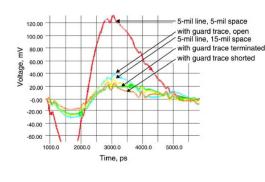

历安毛子科技大学 XIDIAN UNIVERSITY

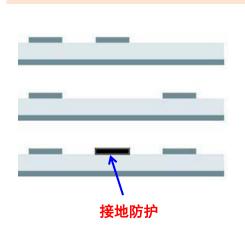


五、常见类型PCB


2、电场耦合干扰

D. "3W/10W"原则


- 3W原则: 导线中心间距为线宽3倍以上时,可以 避开70%的电场耦合;
- 10W原则: 导线中心间距为线宽10倍以上时,可以避开98%的电场耦合;

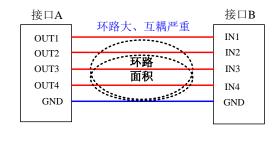


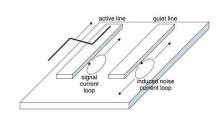
2、电场耦合干扰

E. 防护布线

- 在敏感线与相邻线之间增加接地线,称为防护布线,能进一步降低电场耦合
- 防护布线要加上接地短路过孔(严禁悬空),否则干扰反而增强

173

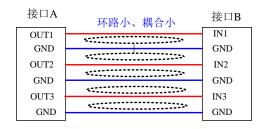

历安笔子科技大学 XIDIAN UNIVERSITY


五、常见类型PCB

3、磁场耦合干扰

A. 磁场耦合干扰的来源

公共耦合环路面积



互感干扰

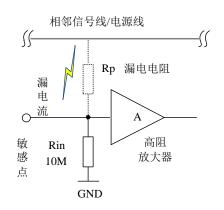
3、磁场耦合干扰

B. 减少磁场耦合干扰的方法

配置回流路径,降低公共耦合 环路面积

增大微带线间距,或改为带状线 (电流对称,磁力线抵消)

175


面安笔子科技大学 XIDIAN UNIVERSITY

五、常见类型PCB

4、电路板漏电影响

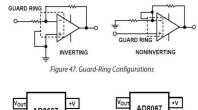
A. 电路板漏电的影响

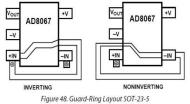
PCB表面污染和体电阻漏电 电流对高阻抗节点的干扰

Val NAVA CO	处理条件	单位	性能参数	
测试项目			参考数值	典型数值
Tg	DSC	°C	≥130	140
可燃性	C-48/23/50		V-0	V-0
9.9MX 1-32				
体积电阻系数	浸水后	MΩ-cm	≥106	2.0×10^{8}
体供电阻杂数	E-24/127		>10 ³	5.0×10 ⁸
# W + PD 27 #4	浸水后	MΩ	≥10⁴	3.0×10 ⁷
表面电阻系数	E-24/125		≥10 ³	5.0×10 ⁷
抗电弧性	D-48/50+D-0: 5/23	S	≱ 60	115
介质击穿	D-48/50+D-0. 5/23	KV	≥40	55
介电常数(1MHZ)	0-24/23/50	10	≤5.4	4. 7
介质损耗角(1MHZ)	0-24/23/50	10	≤ 0. 035	0. 01
挽曲强度 横向		No.	≥415	450
抗田強度 纵向	A	Mpa	≥345	400
吸水率	D-24/23	%	≤ 0.5	0.1
C1	JPCA-ES-01-2003-standard	%	≤ 0.09	0.05
Br	JPCA-ES-01-2003-standard	%	≤ 0.09	0
备注:所有的测试数据都	符合 IPC-4101/92 标准			
样品厚度: 1.6mm				
说明:C=潮湿条件 D=沉	曼在蒸馏水条件 E=温度条件			
Tg=玻璃化转化温)	度, 板材在高温下产生软化变形并伴随	着机械及电气性	主能的急剧下降.	

对于10M以上高阻抗点,就要开 始考虑PCB漏电的影响

4、电路板漏电影响




保护环,将漏电电流吸收至地 (适合保护低电压或虚地点)

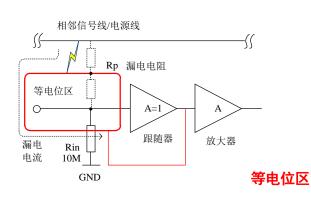
GND

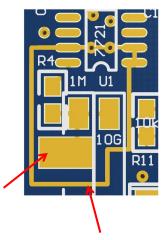
GND

B. 保护环(Guard Ring)

保护环的画法,将敏感部分完全包围

177

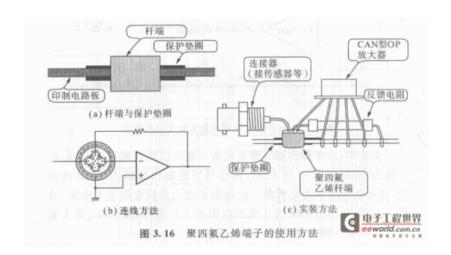

历安笔子科技大学 XIDIAN UNIVERSITY


五、常见类型PCB

4、电路板漏电影响

C. 等电位保护

等电位保护环,用低阻抗跟随器制 造等电位区并将漏电电流吸收

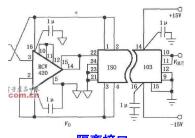


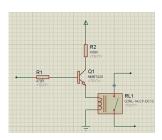
保护环的导线应裸露,以增加吸收表 面污染泄露电流的能力

4、电路板漏电影响

D. 隔离岛和聚四氟乙烯端子

敏感局部使用绝缘性能极佳的聚四氟乙烯端子,避免与PCB接触




1、常见涉及高压的电路

功率电源/逆变电路

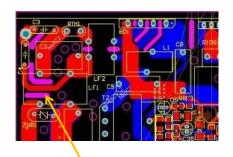
隔离接口

可能接入未知电压的继 电器/开关等

插板式变压器/ACDC输入端

升压/局部高压偏压电路

181


五、常见类型PCB

2、高压电路的布线

高压隔离槽,能有效增加防爬 弧距离,防止污染降低绝缘性

A. 高压隔离槽

高压隔离槽的画法: 在KeepOut层画粗线;注意宽度>1mm否则 不便下刀

2、高压电路的布线

A. 高压隔离槽

对于典型220VAC电源系统、I类电气设备的安全间距

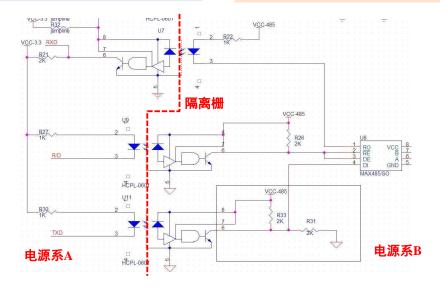
位置	开槽	不开槽
L线-N线	2.0mm	2.5mm
电源-外壳/地	2.0mm	2.5mm
变压器隔离两侧	4.4mm	6.0mm
隔离两侧电路	4.0mm	5.0mm

对于典型 36-76V DC/DC系统, I类电气设备的安全间距

位置	开槽	不开槽
+/-电源线	0.7mm	1.4mm
电源-外壳/地	0.7mm	1.4mm
隔离两侧电路	1.4mm	2.8mm

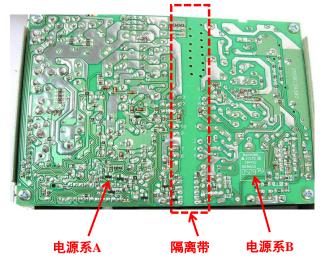
^{*}更详细的安全距离标准,请参考IEC/EN/UL60950-1

183



五、常见类型PCB

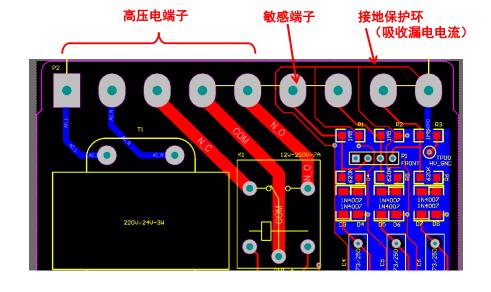
2、高压电路的布线


B. 电源系的概念

隔离电路中,分属不同电源系的任何两根线之间,都要满足绝缘要求

C.隔离带

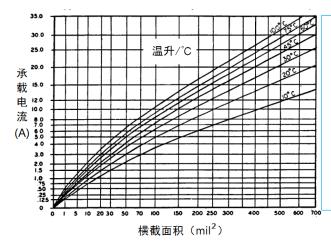
- 分属不同电源系的任何两根线 之间。
- 都要满足绝缘要求


185

五、常见类型PCB

2、高压电路的布线

D.PCB漏电与保护环



1、大电流部分的处理

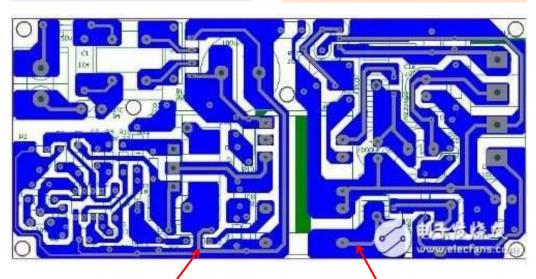
A. 回顾:线宽与电流关系

【例】导线通过10A电流,在室温25℃工作 时要控制导线表面温度不超过70℃

【解】

- (1) 允许温升70-25=45℃。
- (2) 查曲线横截面积 s=150mil²
- (3) 厚度1Oz (35um,1.38mil) 的PCB, 则最小线宽是150/1.38=108mil;
- (4) 采用2Oz的电路板,需要54mil线宽。
- 采用增加导体厚度、改善对流条件,可减小线宽需求
- 大电流过孔计算: 查表所需横截面s, 孔周长l=s/0.7-1.0mil(18-25um);孔径d=l/π

189

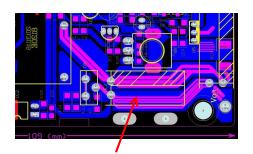

历安笔子科技大学 XIDIAN UNIVERSITY

五、常见类型PCB

1、大电流部分的处理

B. 布线风格

Step1: 用导线完成布通


Step2: 用Fill+Reigion 充分利用铜箔导电面积

1、大电流部分的处理

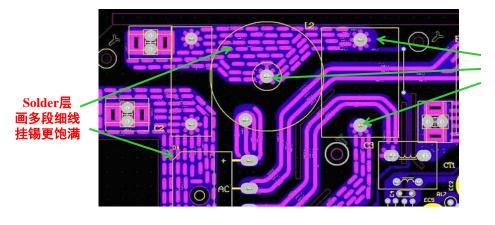
C. 镀锡(增加导体厚度)

在大电流导线所在的 Top/Bot Solder 层绘制导线

实际效果:用波峰焊工艺处理后,裸 露部分挂锡,增加导电层厚度

- 镀锡后的导线等效截面积可增大约1.5-2倍
- 手工堆锡、埋焊铜丝等方法,等效截面积可增大5-10倍

191

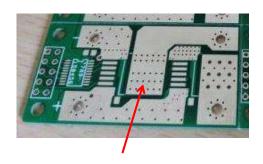

历安冠子科技大学 XIDIAN UNIVERSITY

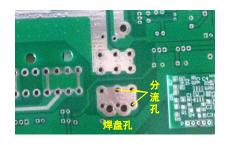
五、常见类型PCB

1、大电流部分的处理

C. 镀锡(增加导体厚度)

大电流焊点 四周镀锡


- 大面积镀锡,容易流动,挂不均匀;改为多段细线,挂锡饱满效果更好
- 大电流焊点,要加分流镀锡,避免电流密度过高局部烧断



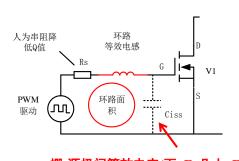
1、大电流部分的处理

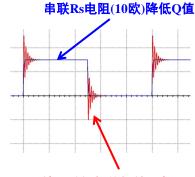
D. 过孔和分流孔

大电流导线上的过孔需要很大的直径,可分散成许多小孔

大电流元件引脚换层时,电流可能过于 密集,在附近要考虑增加分流孔

193


面字笔子科技大学 XIDIAN UNIVERSITY

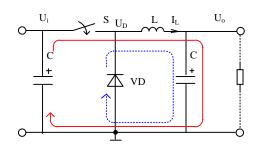

五、常见类型PCB

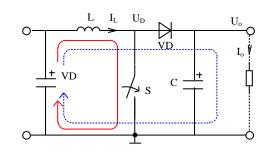
2、高频开关电路设计考虑

A. 开关驱动环路

栅-源极间等效电容(百pF~几十nF)

直接驱动栅极的振铃现象


- 让驱动环路面积(驱动器OUT->MOS栅->源极->驱动器GND)尽可能小
- 栅极串阻的作用:降低环路Q值,避免过冲损坏栅极或错误开关动作
- 栅极串阻会降低开关速度,要实测找到速度和过冲平衡点【不要照抄参考设计】

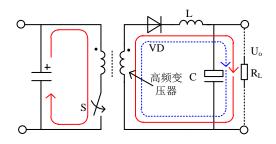


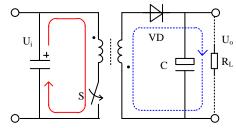
2、高频开关电路设计考虑

B.储能环路和续流环路

- (a) Buck电路中的储能和续流环路
- (b) Boost路中的储能和续流环路
- Step1: 对照拓扑结构图,找出开关变换器的储能环路和续流环路
- Step2:布线应让储能和续流环路的面积都要尽可能小
- Step3:检查储能环路及续流环路与其他导线之间的耦合

195

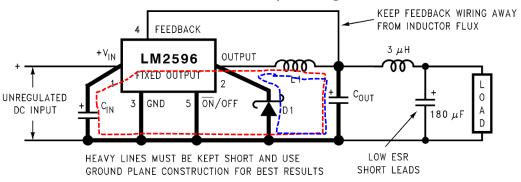

历安笔子科技大学



五、常见类型PCB

2、高频开关电路设计考虑

B.储能环路和续流环路


- (c) Forward电路中的储能和续流环路
- (d)) Flyback电路中的储能和续流环路
- Step1: 对照拓扑结构图,找出开关变换器的储能环路和续流环路
- Step2:布线应让储能和续流环路的面积都要尽可能小
- Step3:检查储能环路及续流环路与其他导线之间的耦合

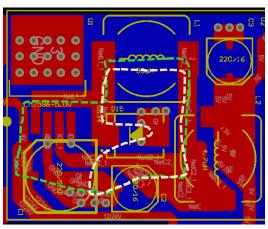
2、高频开关电路设计考虑

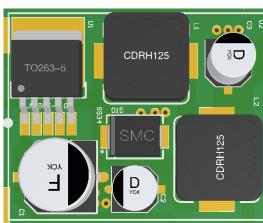
C. 开关环路分析案例

Fixed Output Voltage Versions

---- 开关ON/储能环路

197





五、常见类型PCB

2、高频开关电路设计考虑

C. 环路面积控制案例

